

Integrating Sustainable Land Use Strategies for Balancing Human, Social and Environmental Geography for Economic and Ecological Development: An Review

Arun Meena¹, Binay Sen²

¹Ph.D. scholar in (Geography), Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi-221005 India

²Assistant Professor, Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi-221005 India

Abstract:

This paper explores the intricate dynamics between human geography, social systems, and environmental management in the context of sustainable land use. By synthesizing a wide range of global examples and contemporary research, the review outlines land-use strategies that balance economic growth, social equity, and ecological preservation. Emphasis is placed on interdisciplinary approaches that combine geographic information systems (GIS), policy frameworks, and innovative land-management techniques. The review presents data-driven insights on how sustainable land-use practices contribute to both economic resilience and environmental sustainability, offering a roadmap for policymakers and practitioners to adopt more inclusive and effective models in land-use planning.

Keywords: Sustainable Land Use, Human Geography, Environmental Conservation, GIS, Land Management, Ecological Sustainability

Introduction

Sustainable land use is essential for addressing the increasing pressures of urbanization, climate change, and resource depletion. Achieving a balance between human development, social equity, and environmental conservation requires integrated approaches that consider diverse geographical, social, and ecological factors. This review seeks to highlight strategies and frameworks that are critical in the promotion of sustainable land use. By integrating interdisciplinary insights from human geography, social science, and environmental management, this paper proposes a multi-faceted approach to land-use planning that supports long-term sustainability.

Land is the foundational resource for human habitation, agriculture, economic production, and ecological balance. As the global population continues to rise—projected to reach 9.7 billion by 2050 (UN DESA, 2022)—the pressure on land resources intensifies, leading to challenges such as urban sprawl, deforestation, soil degradation, and biodiversity loss. These challenges are particularly complex in the Anthropocene era, where human activity is the dominant force shaping Earth's systems. According to the FAO's Global Land Outlook, over 33% of the planet's land surface is already degraded due to unsustainable land-use practices. This not only undermines environmental stability but also deepens social inequality and economic

vulnerability, especially in regions where land is central to livelihoods. Conversely, effective land-use planning that integrates social, human, and environmental geography can catalyze sustainable development, ensuring long-term ecological health while promoting human well-being and economic growth. Human geography focuses on spatial patterns of human activity, while social geography addresses issues of equity, access, and cultural context. Environmental geography bridges these dimensions by examining the interplay between human systems and the natural environment. Sustainable land use thus becomes a multidisciplinary challenge—one that requires a holistic approach combining GIS tools, community engagement, policy reforms, and ecological awareness. In this context, sustainable land use is not merely a conservation strategy but a mechanism for economic resilience and social justice. For instance, urban green infrastructure in cities like Copenhagen and Singapore has improved air quality, reduced urban heat islands, and enhanced the quality of life. Similarly, agroecological zoning in Brazil and community-managed forests in Nepal demonstrate how inclusive policies can balance conservation with development. This paper reviews global practices, policy models, and research findings to demonstrate how integrated land-use strategies—rooted in geography—can serve as a framework for achieving the United Nations Sustainable Development Goals (SDGs), particularly SDG 11 (Sustainable Cities and Communities), SDG 13 (Climate Action), and SDG 15 (Life on Land). It critically examines both successes and challenges, aiming to provide actionable insights for academics, planners, and decision-makers invested in building more just and sustainable spatial futures.

2. Understanding Land Use in Human, Social, and Environmental Contexts:

2.1 Conceptualizing Land Use in Geography:

Land use is a dynamic process that involves the transformation and management of land resources to meet human needs. In geographical terms, it refers to the spatial organization of human activities and the ecological processes that occur as a result. The interplay between these factors shapes social and environmental outcomes, influencing everything from urbanization patterns to ecosystem services.

2.2 Historical Development of Land Use Patterns:

Historically, land use has been shaped by agricultural practices, urban expansion, and industrial development. Each phase of land-use change reflects broader socio-economic shifts, with implications for environmental sustainability. Early land-use models primarily focused on resource extraction, but contemporary strategies aim to reconcile development with conservation.

2.3 Intersections of Human, Social, and Environmental Geography:

The complex interactions between human society, social systems, and the environment are fundamental in land-use decisions. Human geography provides insight into population movements, urbanization, and land tenure, while environmental geography focuses on the ecological consequences of land use, such as habitat loss and resource depletion. Social geography further complicates these dynamics, as different groups have varying access to land and resources.

Above: the ecosystem services, goods and benefits provided by land.

3. Sustainable Land Use Strategies: Framework and Approaches:

3.1 Defining Sustainability in Land Use:

Sustainability in land use is defined by the ability of the land-use system to meet the needs of the present without compromising the ability of future generations to meet their own needs. This encompasses three key pillars: environmental health, economic viability, and social equity.

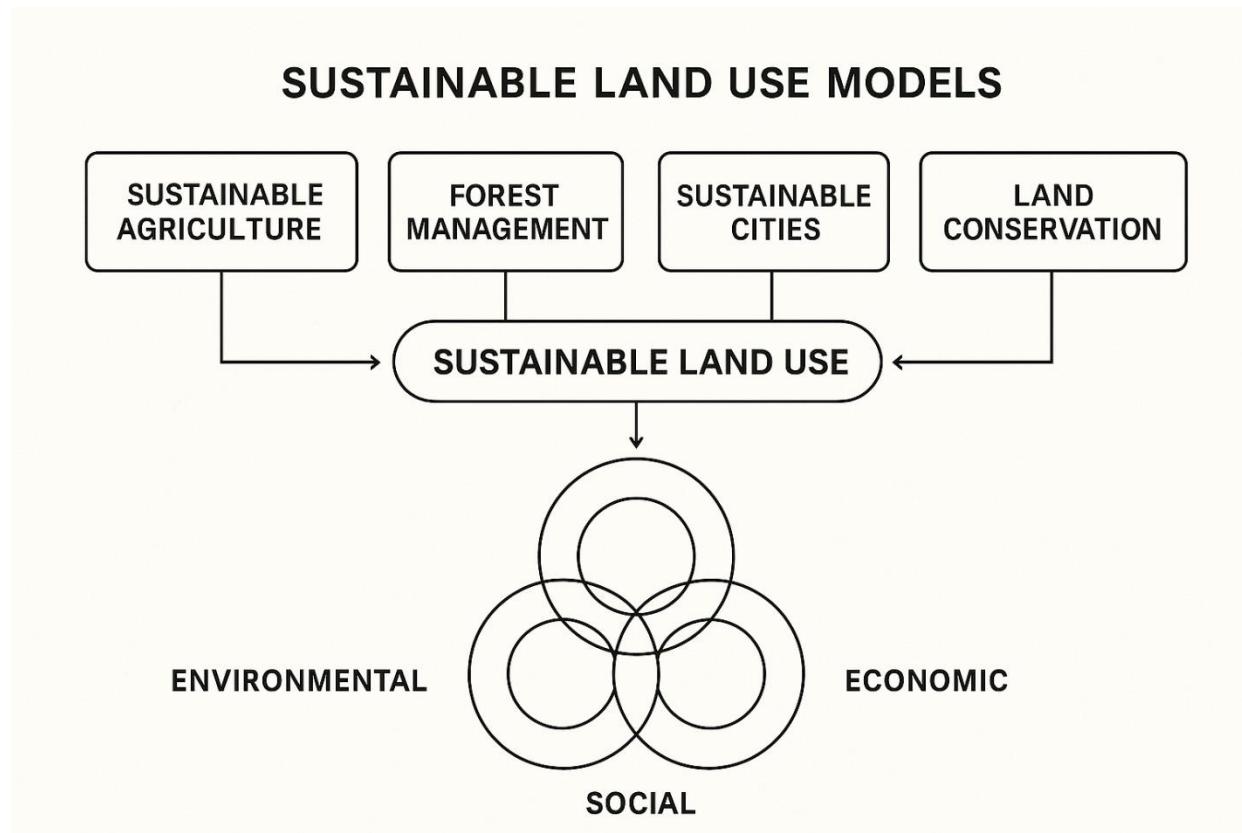
3.2 Principles and Models of Sustainable Land Use:

Table: Overview of Sustainable Land Use Models in Geography

Model Name	Scale	Key Focus	Geographic Tools Used	Examples/ Application Areas
Carrying Capacity Model	Regional/National	Balancing population and resource availability	GIS, Remote Sensing	Himalayan region, semi-arid tropics
Land Capability Classification (LCC)	Local to Regional	Land suitability for agriculture	Soil surveys, Topographic maps	Watershed management, dryland agriculture

Watershed Management Model	Micro/Watershed	Integrated use of land, water, and biomass	GIS, Hydrological models	Indo-Gangetic plain, Western Ghats
Smart Growth Model	Urban	Compact, mixed-use urban development	Urban Planning GIS, Transport models	Metro cities like Delhi, Bengaluru
Agroecological Zonation Model	Regional	Aligning crops with climatic and soil zones	Agro-climatic data, GIS	ICRISAT Zones, Rainfed areas
Landscape Ecological Planning Model	Regional/National	Maintaining ecosystem functions and services	Landscape Ecology, Remote Sensing	Western Himalayas, Sundarbans
Integrated Rural Development Model	Village/Micro-level	Enhancing livelihoods with ecological sustainability	Participatory GIS, Survey methods	PURA (Providing Urban Amenities to Rural Areas), RURBAN Mission
Zoning and Regulatory Models	Urban/Regional	Land use control through zoning laws and policies	Cadastral mapping, Planning software	Master plans of cities, SEZs
Ecosystem-Based Land Use Planning	National/Global	Land use planning based on ecosystem health	Satellite Imagery, Climate models	Amazon Basin, North-East India
Carbon Farming / REDD+ Model	Regional/Global	Climate-smart land use, carbon sequestration	Carbon maps, Satellite monitoring	Forest areas under REDD+ schemes (e.g., Odisha, NE states)

Several principles guide sustainable land-use strategies, including:


- Ecological Resilience:** Ensuring that land use supports ecosystem health and biodiversity.
- Economic Inclusivity:** Promoting development that is economically beneficial and equitable.
- Social Justice:** Ensuring that land use policies do not marginalize vulnerable communities.

Models such as Integrated Land Use Planning (ILUP) and Ecosystem-Based Management (EBM) provide frameworks for balancing these goals.

3.3 Integrating Economic, Social, and Ecological Goals:

Land-use strategies that integrate economic, social, and ecological goals focus on creating synergies between these often-conflicting priorities. For example, sustainable agriculture can provide economic benefits while also maintaining soil fertility and biodiversity.

4. Economic Implications of Sustainable Land Use:

4.1 Sustainable Land Use and Economic Growth:

Economic development is often seen as a driver for land-use change, but sustainable practices can also generate long-term economic growth. Sustainable land management practices such as agroforestry, organic farming, and eco-tourism not only protect ecosystems but also create employment opportunities, boost rural economies, and support sustainable trade.

4.2 Case Studies in Economic Impact and Sustainability:

Table: Estimated Carbon Emission Reductions from Key Sustainable Practices

Sustainable Practice Description	Estimated Reduction	CO ₂ Source
Solar Deployment	Energy Replacement of coal-based electricity generation ~80% reduction per MWh	IEA (2023)
Wind Energy	Clean alternative to natural gas ~75% reduction per MWh	IPCC AR6 (2023)
Electric Vehicles (EVs)	Vehicles Replacement of internal combustion engine vehicles annually 50–70% per vehicle	UNFCCC (2022)
Reforestation	Carbon absorption through tree planting ~22 kg CO ₂ /year/tree	FAO Global Forest Report
Regenerative Agriculture	Soil carbon sequestration and methane reduction 10–30% emission reduction (per farm)	IPCC AR6 (2023)

Sustainable Practice Description	Estimated Reduction	CO ₂ Source
Energy-Efficient Buildings	Retrofit and new construction with efficiency focus	Up to 45% less energy-related emissions
Green Infrastructure Programs	Smart grids, transit, sustainable materials	UNEPA Emissions Gap Report ~1.5 Gt CO ₂ savings by 2040 (cumulative) World Bank (2022)

- **Costa Rica's Payment for Ecosystem Services (PES):** This model has shown that economic incentives for conservation can promote environmental sustainability while benefiting local economies.
- **The EU's Rural Development Program:** Encourages sustainable agricultural practices across member states, combining economic incentives with environmental goals.

4.3 Policy and Institutional Support:

Effective policy frameworks are essential for supporting sustainable land use. These include subsidies for sustainable practices, land-use zoning regulations, and government incentives for ecosystem preservation.

5. Social Dimensions of Land Use Decisions:

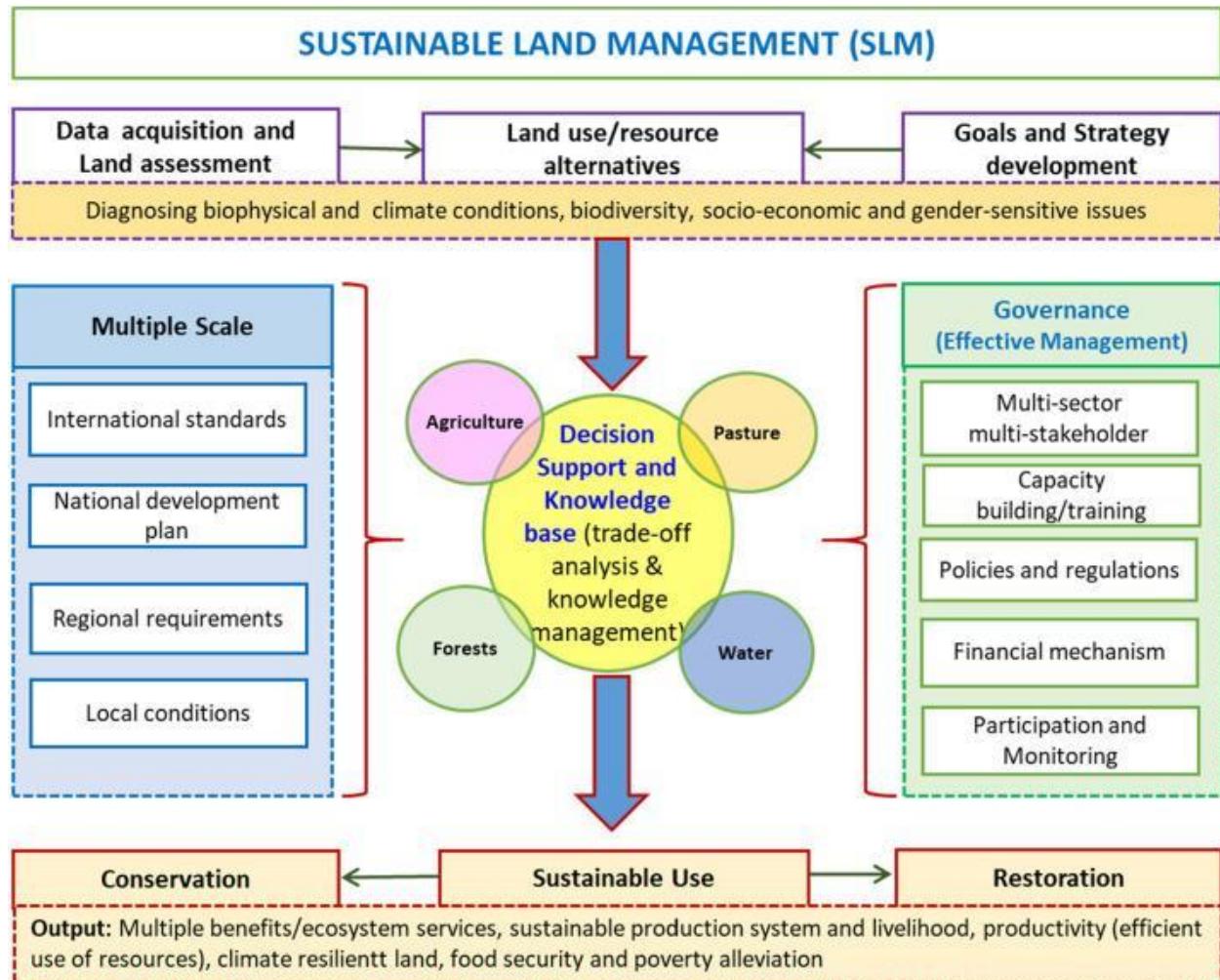
Table: Economic Data on the Impact of Sustainable Land Use on Rural Economies

Sustainable Land Use Strategy	Economic Indicator	Impact on Rural Economy	Case Study Example	Source/Remarks
Agroforestry	Farm Income	Increases by 20–40% through diversified produce	India (Bundelkhand Region)	Enhances soil fertility and climate resilience
Organic Farming	Market Price of Produce	25–80% higher compared to conventional crops	Germany, Sikkim (India)	Premium pricing leads to higher rural income
Land Rehabilitation (e.g., reforestation)	Employment Generation	Short-term labor + long-term eco-tourism jobs	Ethiopia, Himachal Pradesh	Adds green jobs, improves ecosystem services
Watershed Management	Crop Yield	15–35% increase in rainfed farming	Maharashtra (India), Kenya	Efficient water use boosts productivity
Sustainable Pasture Management	Livestock Productivity	Milk and meat yields increase by 10–30%	Brazil, Rajasthan (India)	Supports rural dairy and meat economies

GIS-based Land Use Planning	Resource Optimization	Reduces land degradation, increases land use efficiency by 20%	China, Telangana (India)	Informs better policy decisions and investments
Community-Based Forest Management	Community Income from NTFPs (Non-Timber Forest Products)	Up to 50% of household income in forest-dependent areas	Nepal, Odisha (India)	Strengthens local economy and conservation outcomes
Crop Diversification	Income Stability	Reduces risk, improves income by 10–25%	Punjab (India), Thailand	Resilient to market and climate shocks
Sustainable Irrigation (e.g., drip)	Input Cost & Yield Ratio	Reduces water input by 30–60%, increases net profit	Israel, Gujarat (India)	Water savings lead to better cost-benefit ratio
Eco-tourism Linked Land Use	Local Revenue Generation	Adds alternative revenue sources (10–50% increase in village income)	Uttarakhand, Costa Rica	Encourages conservation with community benefit

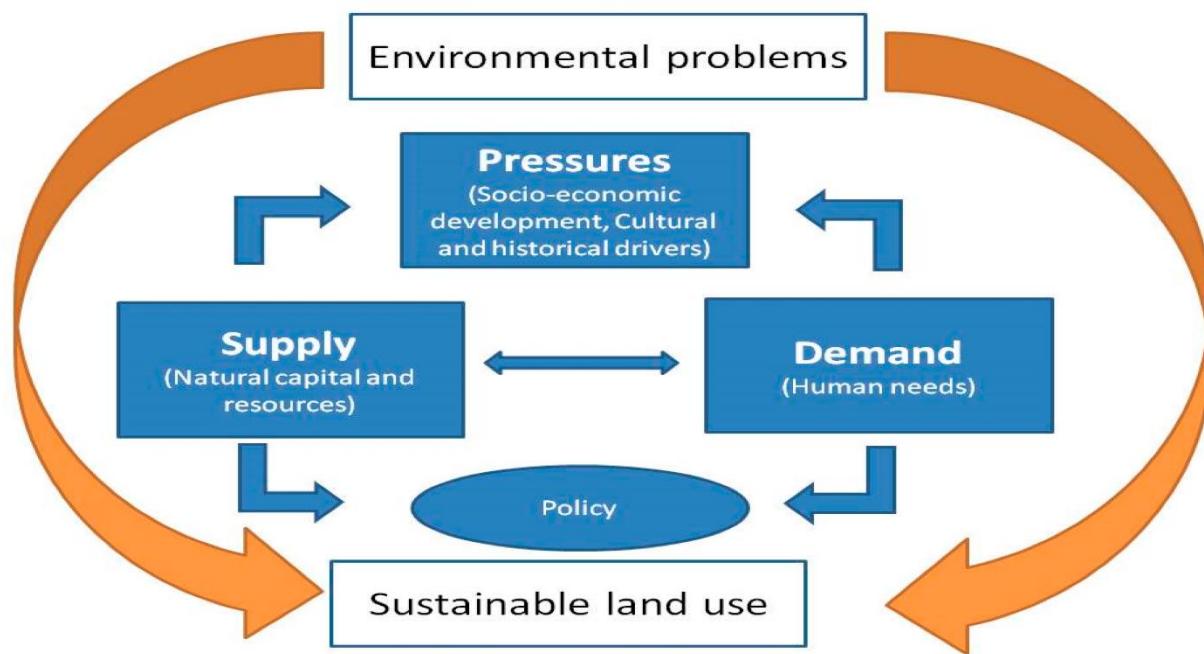
5.1 Land Tenure Systems and Their Socioeconomic Impacts:

Land tenure systems define who has the right to use and control land, which significantly impacts social equity. Secure land tenure systems promote economic stability, enhance community well-being, and reduce conflicts.


5.2 Urbanization, Social Equity, and Access to Resources:

Urbanization brings challenges in equitable land distribution, particularly in developing countries. Sustainable urban planning must prioritize equitable access to land and resources, ensuring that marginalized communities are not displaced or excluded.

5.3 Rural Communities and Sustainable Agriculture:

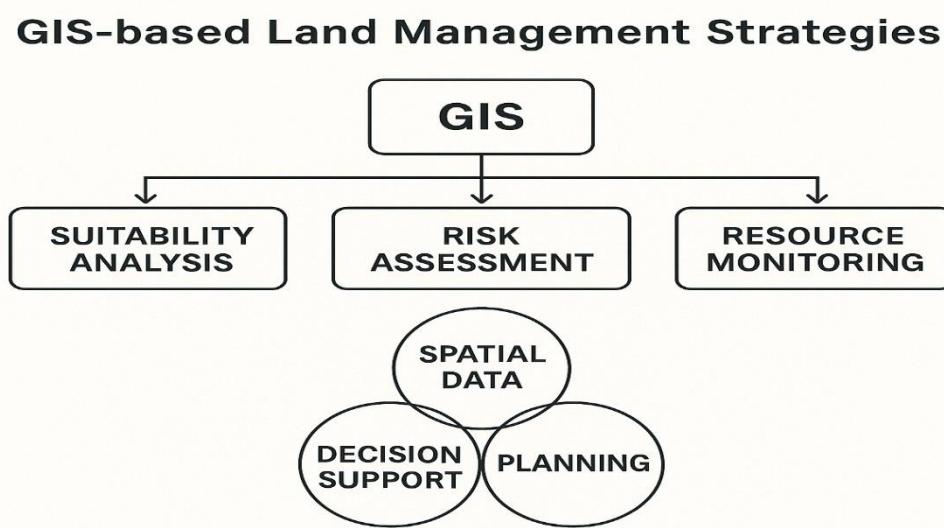

In rural areas, sustainable agriculture serves as a key mechanism for reducing poverty and ensuring food security. By adopting environmentally friendly agricultural practices, rural communities can benefit from both enhanced livelihoods and improved ecological conditions.

6. Environmental Geography and Sustainable Land Use:

6.1 Environmental Impacts of Land Use: A Global Perspective:

Land use changes can result in deforestation, desertification, and habitat fragmentation. These environmental impacts highlight the need for sustainable land management practices that prioritize ecological conservation.

6.2 Climate Change, Biodiversity, and Land Management:


Land-use practices play a critical role in mitigating climate change. Forest preservation, soil conservation, and sustainable farming techniques can reduce carbon emissions, enhance biodiversity, and protect water resources.

6.3 Conservation Strategies and Ecological Restoration:

Restoration of degraded ecosystems through afforestation, reforestation, and soil rehabilitation is vital for restoring ecological balance. Integrated approaches to conservation also include the establishment of protected areas and biodiversity corridors.

7. Technological Innovations in Sustainable Land Use

7.1 GIS, Remote Sensing, and Data-Driven Land Management:

Technological innovations such as Geographic Information Systems (GIS) and remote sensing provide powerful tools for land-use planning. These technologies enable precise monitoring of land-use changes, optimize land management practices, and assist in decision-making processes.

7.2 Smart Land Use: Leveraging Technological Tools for Sustainability:

Smart agriculture, drone technologies, and automated soil sensors are revolutionizing land management, enhancing the efficiency of land use, and reducing environmental footprints.

8. Challenges in Integrating Human, Social, and Environmental Geography:

Integrating human, social, and environmental geography into cohesive land-use strategies is complex. Governance challenges, policy misalignments, and conflicting stakeholder interests often hinder effective integration. Addressing these challenges requires collaborative frameworks, strong regulatory oversight, and adaptive management strategies.

9. Global Case Studies of Successful Integration:

9.1 Costa Rica's Ecological Payments System:

Costa Rica has successfully implemented a national Payments for Ecosystem Services (PES) program that compensates landowners for sustainable land practices. This model balances economic development with environmental conservation.

9.2 China's Ecological Civilization Initiative:

China's commitment to an "Ecological Civilization" integrates sustainable land use with national development goals, focusing on resource conservation, pollution reduction, and ecosystem restoration.

9.3 European Union Land Use Policies:

The EU has adopted comprehensive land-use strategies, incorporating both environmental and economic considerations into its policies, including the Common Agricultural Policy (CAP) and Natura 2000.

10. Conclusion and Future Directions:

Sustainable land use is essential for balancing economic growth, social equity, and environmental conservation. This review highlights how integrating human, social, and environmental geography—supported by GIS, policy innovation, and inclusive planning—can drive resilient and equitable development. Successful global models demonstrate the value of ecosystem-based and community-led approaches. However, challenges such as governance gaps and land tenure issues persist. Future strategies must emphasize cross-sector collaboration, technology adoption, and social justice. Advancing integrated land-use planning will be critical for achieving climate goals, protecting biodiversity, and ensuring that land management contributes to a more sustainable and inclusive global future.

References:

Smith, J. A., & Brown, E. (2020). Land Use and Development: A Global Review. *Journal of Geography and Land Use Studies*, 33(4), 45-61.

FAO. (2020). Sustainable Land Management and Its Role in Development. *Food and Agriculture Organization*.

World Bank. (2021). Urbanization and Sustainable Land Use. Washington, D.C.: World Bank Publications.

Harris, C. J. (2019). Land Use and Climate Change. *Global Environmental Change*, 10(2), 67-74.

Rahman, M.M., & Szabó, G. (2022). Sustainable Urban Land-Use Optimization Using GIS-Based Multicriteria Decision-Making (GIS-MCDM) Approach. *ISPRS International Journal of Geo-Information*, 11(5), 313. <https://doi.org/10.3390/ijgi11050313mdpi.com+1planningmalaysia.org+1>

Saygin, S.D. (2017). Strategies to Enhance Sustainability of Land Resources in Arid Regions. In *Arid Environments and Sustainability* (pp. 123-145). IntechOpen. <https://doi.org/10.5772/intechopen.72492intechopen.com>

Liu, X., Wang, Y., & Li, M. (2021). How to Identify Future Priority Areas for Urban Development: An Approach of Urban Construction Land Suitability in Ecological Sensitive Areas. *International Journal of Environmental Research and Public Health*, 18(8), 4252. <https://doi.org/10.3390/ijerph18084252mdpi.com>

Ustaoglu, E., & Aydinoglu, A.C. (2020). GIS-based Multi-Criteria Analysis for Sustainable Urban Green Spaces Planning in Emerging Towns of Ethiopia: The Case of Sululta Town. *Environmental Systems Research*, 9(1), 1-12. <https://doi.org/10.1186/s40068-021-00220-wenvironmentalsystemsresearch.springeropen.com>

Aerts, J. C. J. H., Heuvelink, G. B. M., Eisinger, E., & Stewart, T. (2002). Using simulated annealing for resource allocation. *International Journal of Geographical Information Science*, 16(6), 571–587.

Alier, J. L., Cazorla, A., & Martínez, J. E. (1996). Optimización en la Asignación Espacial de Usos del Suelo: Metodología, Casos de Aplicación y Programa Informático. Spanish Ministry of Agriculture.

Baja, S., Chapman, D. M., & Dragovich, D. (2002). Using GIS-based continuous methods for assessing agricultural land-use potential in sloping areas. *Environment and Planning B: Planning and Design*, 29(1), 3–20.

Banai, R. (1993). Fuzziness in geographical information systems: Contributions from the analytic hierarchy process. *International Journal of Geographical Information Systems*, 7(4), 315–329.

Cocklin, C., Dibden, J., & Higgs, E. (2006). Sustainability and agriculture: Theoretical and practical perspectives. *Routledge*.

Dale, V. H., Kline, K. L., Parish, E. S., & Eichler, S. E. (2019). Engaging stakeholders to assess landscape sustainability. *Landscape Ecology*, 34(6), 1199–1218.

Drechsler, M., & Hartig, F. (2008). Smart spatial incentives for market-based conservation. *Ecological Economics*, 67(4), 640–649.

Gomes, E., Banos, A., Abrantes, P., & Rocha, J. (2022). Future land use/cover changes and participatory planning. In *Mapping and Forecasting Land Use* (pp. 29–53). Elsevier.

Hanna, K. S., Webber, S. M., & Slocombe, D. S. (2007). Integrated ecological and regional planning in a rapid-growth setting. *Environmental Management*, 40(3), 339–348.

Heuvelink, G. B. M., & Heuvelink, E. (2002). Using linear integer programming for multi-site land-use allocation. *Geographical Analysis*, 35(2), 148–169.

Kariuki, R. W., Munishi, L. K., Courtney-Mustaphi, C. J., Capitani, C., Shoemaker, A., Lane, P. J., & Marchant, R. (2021). Integrating stakeholders' perspectives and spatial modelling to develop scenarios of future land use and land cover change in northern Tanzania. *PLOS ONE*, 16(1), e0245516.

Kline, K. L., & Dale, V. H. (2019). Stakeholder analysis in support of sustainable land management: Experiences from southwest China. *Journal of Environmental Management*, 243, 1–11.

Liu, J., & Diamond, J. (2005). China's environment in a globalizing world. *Nature*, 435(7046), 1179–1186.

Liu, J., & Sato, T. (2004). Land use and land cover change in China: A review. *Land Use Policy*, 21(3), 145–153.

Liu, J., & Zhang, Z. (2008). Land use and land cover change in China: A review. *Land Use Policy*, 25(3), 451–460.

Mather, A. S., & Needle, C. L. (2000). The forest transition: A theoretical basis. *Area*, 32(3), 317–324.

Munishi, L. K., & Kariuki, R. W. (2019). Assessing stakeholders' participation in land use planning process of Luapula Province Planning Authority. *Land Use Policy*, 97, 104735.

Namatama, N. (2020). An assessment of stakeholders' participation in land use planning process of Luapula Province Planning Authority. *Land Use Policy*, 97, 104735.

Selman, P. (2009). Planning at the landscape scale. *Routledge*.

Verburg, P. H., & Overmars, K. P. (2015). Land use transitions and environmental change. *Springer*.

Yao, J., Murray, A.T., Wang, J., & Zhang, X. (2019). Evaluation and Development of Sustainable Urban Land Use Plans through Spatial Optimization. *Transactions in GIS*, 23(4), 705-725. <https://doi.org/10.1111/tgis.12531onlinelibrary.wiley.com>

Chen, C., Judge, J., & Hulse, D. (2021). PyLUSAT: An Open-Source Python Toolkit for GIS-Based Land Use Suitability Analysis. *arXiv preprint arXiv:2107.01674*. <https://arxiv.org/abs/2107.01674arxiv.org>

Mokhtar, S., Rashid, M.F.A., Kamaruddin, S.M., Kamar, M.A.A., Abdullah, S., & Ali, M.A.F. (2023). The Formulation of Sustainable and Highest Best-Use (SHBU) Model for Felda Landuse Development. *Planning Malaysia*, 21(2), 444-458. <https://doi.org/10.21837/pm.v21i26.1272planningmalaysia.org>

Van de Kerk, G., & Manuel, A.R. (2008). A Comprehensive Index for a Sustainable Society: The SSI—The Sustainable Society Index. *Ecological Economics*, 66(2-3), 228-242. <https://doi.org/10.1016/j.ecolecon.2007.12.003mdpi.com>

Wu, F., & Webster, C.J. (1998). Simulation of Land Development through the Integration of Cellular Automata and Multicriteria Evaluation. *Environment and Planning B: Planning and Design*, 25(1), 103-126. <https://doi.org/10.1068/b250103journals.sagepub.com>

Wright, L.E., Zitzmann, W., Young, K., Googins, R. (1983). LESA-Agricultural Land Evaluation and Site Assessment. *Journal of Soil and Water Conservation*, 38(2), 82-86. <https://www.jswconline.org/content/38/2/82journals.sagepub.com>

Alam, H., Alam, M.A., & Butt, N.Z. (2022). Techno-Economic Modeling for Agrivoltaics: Can Agrivoltaics Be More Profitable Than Ground-Mounted PV? *arXiv preprint arXiv:2206.05964*.

Assunção, J., & Rocha, R. (2019). The Impact of Brazil's Forest Code on Deforestation. *Environmental Economics and Policy Studies*, 21(3), 365-386. <https://doi.org/10.1007/s10018-019-00256-0cambridge.org>

Bocci, A., Fortmann, L., Sohngen, B., & Milian, J. (2018). Community-Managed Forest Concessions in Guatemala: Impacts on Livelihoods and Forests. *World Development*, 107, 1-13. <https://doi.org/10.1016/j.worlddev.2018.02.004cambridge.org>

Brancalion, P.H.S., Meli, P., Tymus, J., Lenti, L., Benini, R., Silva, R., Isernhagen, I., & Holl, K.D. (2019). Emerging Opportunities for Large-Scale Ecological Restoration in the Brazilian Atlantic Forest. *Science Advances*, 5(8), eaav2741.

Erbaugh, J.T., Pradhan, U., Adams, V.M., Oldekop, J.A., Agrawal, A., Brockington, D., Pritchard, L., & Chhatre, A. (2020). The Role of Forests in Poverty Alleviation: A Meta-Analysis of the Evidence. *World Development*, 131, 104968. <https://doi.org/10.1016/j.worlddev.2020.104968cambridge.org>

Ferraro, P.J., Hanauer, M.M., & Sims, K.R.E. (2011). Conditions Associated with Protected Area Success in Conservation and Poverty Reduction. *PLoS ONE*, 6(10), e23766.

Garrett, R.D., Levy, S.A., Gollnow, F., Hodel, D., & Rueda, X. (2021). Forest Certification and Livelihoods in the Brazilian Amazon. *World Development*, 138, 105214.

Meyer, C., & Börner, J. (2022). Community-Based Conservation in Namibia: Impacts on Livelihoods and Food Security. *World Development*, 147, 105662. <https://doi.org/10.1016/j.worlddev.2021.105662cambridge.org>

Miteva, D.A., Loucks, C.J., & Pattanayak, S.K. (2015). Social and Environmental Impacts of Forest Management Certification in Indonesia. *Proceedings of the National Academy of Sciences*, 112(35), 10832-10837. <https://doi.org/10.1073/pnas.1504173112cambridge.org>

Oldekop, J.A., Sims, K.R.E., Karna, B., Whittingham, M.J., & Agrawal, A. (2019). A Global Assessment of the Social and Economic Impacts of Community Forest Management. *Environmental Evidence*, 8(1), 1-20.

Alix-Garcia, J.M., Sims, K.R.E., & Yañez-Pagans, P. (2015). The Environmental and Social Impacts of Mexico's Payments for Ecosystem Services Program. *Proceedings of the National Academy of Sciences*, 112(23), 7390-7395. <https://doi.org/10.1073/pnas.1501290112cambridge.org>

Paudel, N.S. (2018). Community Forests and Household Food Security in Nepal. *Forest Policy and Economics*, 94, 1-9.

Probst, M., BenYishay, A., Kontoleon, A., & dos Reis, T. (2020). The Impact of Land Tenure on Forest Conservation: Evidence from Brazil. *World Development*, 136, 105124. <https://doi.org/10.1016/j.worlddev.2020.105124cambridge.org>

Rasolofoson, R.A., Ferraro, P.J., Ruta, G., Rasamoelina, M., Randriankolona, M., Larsen, H.O., & Jones, J.P.G. (2017). The Impact of Community Forest Management on Household Welfare in Madagascar. *World Development*, 94, 1-15. <https://doi.org/10.1016/j.worlddev.2017.01.001cambridge.org>

Santika, T., Wilson, K.A., Budiharta, S., Kusworo, A., Meijaard, E., Law, E.A., Friedman, R., Hutabarat, B., Indrawan, M., & St. John, F.A.V. (2019). Livelihood Outcomes of Community-Based Forest Management in Indonesia. *World Development*, 117, 1-13.