© 2025 IJRAR August 2025, Volume 12, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-
5138)

IJRAR.ORG E-ISSN: 2348-1269, P-ISSN: 2349-5138

INTERNATIONAL JOURNAL OF RESEARCH AND
% ANALYTICAL REVIEWS (IJRAR) | URAR.ORG
An International Open Access, Peer-reviewed, Refereed Journal

Overview of Lattice-Based Cryptography for
Communication Networks

Chandrashekhar Diwakar?, Nasheem Khan?*

!Assistant Professor, Department of Mathematics, Govt. Degree College, Mant, Mathura (U. P.) - 281202
2Assistant Professor, Department of Mathematics, Babu Shivnath Agrawal College, Mathura (U. P.) -
281004
L.2pDr. Bhimrao Ambedkar University, Agra (U. P.) - 282004, India

Abstract. Due to recent advancements in technology, our computer systems, the data stored on computer
systems, and our daily communications through mobile devices and other electronic devices are not entirely
safe. The emergence of quantum computers has attracted the attention of researchers and computer
scientists. Because, the security of our data and daily communications depends on cryptographic primitives
based on discrete logarithmic problems and integer factorization problems, which are not safe in the current
guantum computing era. So, there is a need for cryptographic systems that are safe in a quantum computing
environment. Researchers have found that cryptographic algorithms based on lattices are secure against
quantum computing attacks. Lattice-Based Cryptography (LBC) is considered an alternative to classical
cryptosystems based on discrete logarithmic problems and integer factorization problems in a quantum
computing environment. This paper aims to provide an overview of LBC, its significance, and its fields of
interest.

Index Terms: Lattice-based cryptography, NTRU, RLWE, Security, Privacy.

I. INTRODUCTION

In the past few years, the advancements in technology have increased rapidly. Our computers and
communication systems have been advanced with the latest technologies. In our daily life, we store most of
our data on computers and mobiles. We use electronic devices for different types of communication
including talking, gaming, streaming, chatting, and money transfer, etc. There are various cryptographic
systems that are used to secure our computer systems and communication systems. The security of these
cryptosystems is based on discrete logarithmic problems and integer factorization problems. Some of them
are ECC, RSA, Diffie-Hellman, etc. The standard public-key cryptographic protocols like RSA, Diffie-
Hellman, ECC, etc., yield mathematical problems that are difficult to solve, or one can say that their
solution is likely to be impossible. But in recent times, these cryptosystems are not secure because of the
emergence of quantum computers. These cryptosystems can be broken on a quantum computer by Shor’s
[1] algorithm, given by Peter Shor in 1994. In the absence of quantum computers, these algorithms are only
a theoretical concern but they have a long-standing reputation. However, in recent years, the growth in the
field of quantum computers stipulates the requirement of quantum-resistant cryptographic primitives that
could be a feasible replacement for standard public-key cryptographic primitives. Lattice-based public-key
cryptographic algorithms are possible replacements.

There are two faces of lattices [2] in cryptography:
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(1) Lattices have been used mostly as an algorithmic tool to break cryptographic systems.
(i) Lattices can be used to form cryptographic algorithms that could be hard to break even on quantum
computers.

In the early 80s, since the development of Lenstra, Lenstra, and Lovasz’s [3] basis reduction algorithm,
lattices have been used to attack a wide range of public-key cryptosystems. In the late 90s, the
computational complexity of lattice problems attracted renewed attention, stimulated by Ajtai’s surprising
discovery [4] of a connection between the worst-case and average-case complexity of certain lattice
approximation problems. He suggested a totally different way of using lattices in cryptography by showing
how to use computational lattice problems to build cryptographic primitives that are impossible to break.
Namely, design cryptographic functions that are as difficult to crack as it is to solve a computationally hard
lattice problem. Cryptography requires problems that are hard to solve on average, so when a cryptographic
key is chosen at random, the corresponding function is hard to break with high probability. Post-quantum
cryptography pertains to cryptographic primitives that are considered to be safe against quantum computing
attacks. So LBC is also known as a part of post-quantum cryptography.

1.1 MOTIVATION

The classical public-key cryptosystems are not safe in quantum computing environments. Lattice-based
cryptosystems are based on the hardness of some lattice problems, and these cryptosystems are hard to
break even on quantum computers. Also, the less running time and lower computational cost of lattice-based
cryptosystems compared to standard public-key cryptosystems are important to attract researchers and
computer scientists.

1.2 ROADMAP OF THIS PAPER

In the next section, we discuss related work. Section 11l covers primary information on lattices, some
special types of lattices, and some important problems related to lattices. Section IV covers a concise
discussion of some generally used lattice-based cryptosystems. Section V covers the significance of LBC.
Section VI covers fields of interest. In the last section, we have given an obligatory conclusion.

Il. RELATED WORK

M. Ajtai [4] generated hard instances of lattice problems. D. Cash et al. [5] told about bonsai trees or how
to delegate a lattice basis. N. Gama et al. [6] gave the lattice enumeration technique using extreme pruning.
C. Gentry [7] proposed a fully homomorphic encryption scheme using ideal lattices. C. Gentry et al. [8]
gave Trapdoors for hard lattices and some new cryptographic constructions. O. Goldreich et al. [9] gave a
Collision-free hashing technique using lattice Problems. O. Goldreich et al. [10] made some public key
cryptosystems from lattice reduction problems. O. Goldreich et al. [11] explained that approximating
shortest lattice vectors is not harder than approximating closest lattice vectors. J. Hoffstein et al. [12] gave a
ring-based public key cryptosystem (NTRU). V. Lyubashevsky et al. [13] explained asymptotically efficient
lattice-based digital signatures. V. Lyubashevsky et al. [14] told about ideal lattices and the ring learning
with errors problem. A. May et al. [15] gave some methods of dimension reduction for convolution modular
lattices. D. Micciancio et al. [16] gave information about Generalized Compact Knapsacks, Cyclic Lattices,
Computational Complexity of lattices, and Efficient One-Way Functions. D. Micciancio et al. [17] gave a
survey on Lattice-based cryptography. P. Nguyen and J. Stern [2] explained how lattices work with two
faces in cryptology. C. Peikert et al. [18] gave a framework for efficient and composable oblivious transfer.
O. Regev [19] explained how lattices with learning with error to generate random linear codes in
cryptography. P. W. Schor [20] gave Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. D. Stehle et al. [21] gave an Efficient public key encryption technique
using ideal lattices.

I1l. PRIMARY INFORMATION OF LATTICES
3.1 Lattices and their mathematical background
A lattice is a set of objects (or points) structured consistently in a space. Arrangement of atoms in a crystal
is an example of a lattice (Fig. 1). The points are connected through straight lines to form a geometric
pattern or structure. In LBC, this geometric pattern scrambles and unscrambles messages. Because of the
structure of a lattice, it is difficult to break lattice-based cryptosystems (as some patterns extend infinitely).
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Mathematically, a set L defined by L = {3, a;X;: a; is an integer for all i} is said to be a lattice. The
set B = {X1, X5, e ver o , X} of n linearly independent vectors is said to be a basis of the lattice L. A lattice
can have multiple bases, some of which are nearly orthogonal, and these bases are known as good bases
(Fig. 2). The fact that a lattice can have multiple bases is the heart of various applications of lattices in
cryptography. Another example of a lattice is the set of all n-vectors whose components are integers. Let o
be the minimum distance of a lattice L. Then ¢ is defined as o = {||X—Y|: X,Y €Land X #Y} =

min{||X||:X € L and X # 0}, where the function ||| is defined as ||a|| = VX? + X3+ + X2, a =
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figure 1. Crystal of Sodium Chloride
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figure 2. Representation of good basis and bad basis
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Definition 3.1 The rotation or cyclic rotation of a vector a = (X, X5, ..., X,;) € R™ is defined by rot(a) =

(X, X1, ..., Xn—1) € R™. The lattice L is called a cyclic lattice if a € L = rot(a) € L(B).

Definition 3.2 Let g be an irreducible polynomial of degree n with unity as the coefficient of the highest

degree term. Consider a lattice L(B) € Z" such that L(B) = {h mod(g):h € Iand I C % is an ideal}.

The lattice L is called an ideal lattice, which means that (c,, ¢y, ..., ¢,,—1) € Lifand only if ¢, + ¢, X + - +

Cp X1 €L

Definition 3.3 A lattice defined by Ly = {c * s = d mod m} is known as a 2N-dimensional convolution

modular lattice associated with the vector s and modulus m.

3.2 Some important lattice problems used to construct lattice-based cryptographic primitives:

() Shortest vector problem (SVP): For all non-zero vectors Y in a lattice L, one has to find a non-zero
vector X in L such that || X]| < ||Y]].

(i)  Closest vector problem (CVP): For any given vector 0 # X ¢ L and all Z € L, one has to find a
vectorY e L suchthat ||y — X|| < ||Z - X||.

(i)  Shortest independent vector problem (SIVP): Consider a lattice L with the basis B =
{Y1,Y,,...,Y,}. Then in SIVP one has to find n linearly independent vectors X;, X,, ..., X, in L such
that max||X;|| < maxg||Y;]|.

(iv)  Approximate Shortest Vector Problem (SVP,): Let X be the shortest non-zero vector in a lattice
L. Then, in approximate shortest vector problem, one has to find a non-zero vector Y such that ||Y|| <
allX|l.

(v) Approximate Closest Vector Problem (CVP,): Let Y be the closest vector to a given vector X of a
lattice L. Then in approximate closest vector problem, one has to find a vector Y* in L such that
IY" = X|| < a||Y = X]||.

(vi)  Bounded Distance Decoding (BDD) Problem: In a lattice L the aim of the BDD problem is to find
the closest lattice point to a given target vector while the target vector lies within a finite distance of
the lattice. This distance is usually defined relative to the minimum distance of the lattice.

(vii)  Shortest Integer Solution (SIS) Problem: Consider a matrix A with entries from Z,, the integer
modulo p, and a bound &. The SIS problem aims to find a non-zero vector X such that AX =
0 (mod p) and || X| < 6.

(viii) Learning with Errors (LWE) Problem: Consider m > 1,q = 2, and ¢ be an “error” probability
distribution on Z,. Let u € Z, be a vector with m coefficients. Choose a € Z, identically at
random and choose e € Z, according to ¢. Consider the output {a, {a,u} + e} where additions are
as defined in Z,. Then, we get the probability distribution B, , on Z7* X Z,. It is said that an
algorithm can solve the LWE problem with modulus g and error distribution ¢ if for any u € Z7*
given enough samples from B, , it outputs u with strong probability.

(iX)  Ring Learning with Errors (RLWE) Problem: Let K = Q be a number field and R = Z be the ring
of integers. Let g = 2 be an integer modulus and J, = J/q] = Z/qZ (taking ] = Z') be a fractional
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ideal in K. Let U = Kr/RY, where RV is the dual of R. Consider the secret s € (R"), and an error

distribution ¢ over K. Then a number r € R, can be mapped onto the same number in Ky by using
the simple embedding f of R,. A sample of By, on K X U is created by taking a from R,
uniformly at random, taking e from ¢, which are between 0 and g — 1, and calculate (a,c = (a X
s)/q + emod RY). Then we say that the Ring-LWE can be solved by an algorithm if given enough
samples from B, it can retrieve s with strong probability.

The hardness of the above problems is based on the dimension n of the lattice L. As the dimension n of
the lattice L increases to a large number, the above problems tend to become difficult. The results after
solving the above problems have surprisingly many applications in various fields. The CVP is known to be
NP-hard, and the SVP is NP-hard if we use the [® norm. The researchers found that the reduced CVP to an
SVP is relatively more difficult than an SVP, as it is used in [11]. Ajtai suggested an entirely different way
of using lattices in cryptography. He has shown how to use computational problems like SVP, CVP, SIVP,
etc., to build cryptographic primitives that are likely to be impossible to break. That is, design functions in
cryptography such that they are as difficult to break as it is to find the solution of a mathematically difficult
lattice problem. In cryptography, there is a requirement of problems that are difficult to solve on average.
So, when an attacker chooses a key randomly, the corresponding cryptographic function is difficult to break.

LBC is the generic term to construct cryptographic algorithms that include lattices, either in the creation
itself or the security proof. In recent time, lattice-based cryptosystems are the prime candidates for post-
quantum cryptography. The classical public-key cryptosystems, such as the Diffie-Hellman, RSA, and ECC,
could likely be defeated using Shor’s algorithm [20] on quantum computers [22]. Lattice-based
cryptosystems can resist attacks by standard and quantum computers.

IV. SOME LATTICE-BASED CRYPTOSYSTEMS
Various cryptosystems based on lattices are introduced. Some of them are described below:
Ajtai-Dwork: Ajtai and Dwork proposed the cryptosystem. They asserted that the system is surely safe
unless a worst-case lattice problem could be solved in polynomial time. This cryptosystem is not easy to
practice because of the large key size. It has been shown that an efficient implementation of the system is
not secure [2].
GGH: This is an asymmetric lattice-based cryptosystem proposed by Goldreich, Goldwasser, and Halevi in
1997 [10]. There is also a GGH signature scheme. This cryptosystem works under the assumption that the
CVP problem can be hard. This system uses a one-way trapdoor function that relies on the hardness of
lattice reduction. Phong Q. Nguyen [11] cryptanalyzed (broken) the GGH encryption scheme in 1999. The
related GGH signature scheme was broken or cryptanalyzed by Nguyen and Oded Regev in 2006.
Bonsai Tree: A new lattice-based cryptosystem was introduced in 2010, known as Bonsai Tree [5]. This
cryptosystem has applications for some important lattice problems in LBC. Two of them are as follows:
Q) An effective “hash-and-sign” signature scheme in the standard model without using the random

oracle problem, which is important because the random oracle problem is very problematic in
cryptography.

(i) ~ The HIBE (hierarchical identity-based encryption) scheme, which does not depend on bilinear
pairings, with the basic problem, for instance, the Learning with Errors problem.

Number Theory Research Unit (NTRU): NTRU is the most well-known lattice-based cryptosystem
proposed by J. Hoffstein, J. Pipher, and J. H. Silverman in 1996.

It contains two algorithms:

(1 NTRUEncrypt: NTRUENcrypt is used for encryption

(i) NTRUSign: NTRUSIgn is used for digital signatures

The American agency, National Institute of Standards and Technology (NIST), recognized this
cryptosystem as the most useful lattice-based cryptosystem, which is secure against quantum computing
attacks. The security of the cryptosystem is based on SVP. So, the searching for short vectors is a way to
attack the cryptosystem, which becomes practically impossible if the dimension of the lattice is very large.
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The LLL algorithm also takes too long time to find the smallest vector, so that the smallest vector is not too
much smaller than the expected length of the smallest vector [12]. J. Hoffstien et al. have shown some
approximate breaking timings of the NTRU cryptosystem [23]. For a better variant of the LLL algorithm
running on a 400MHz Celeron machine, approximate breaking times of the NTRU system are shown in
[23], which is around 5200 years for the modest security level.

LWE Cryptosystem: The LWE-based cryptosystem was developed by O. Regev in 2005 [19]. This
cryptosystem is secure, but the main downside of this system is that it is not convenient due to the
magnification of information or data while converting it from plaintext to ciphertext. During the process of
converting the message or information from plaintext to ciphertext, the content of the information gets
magnified by n. So, if n is large, it is very unsuitable to send large messages, because if the encryption
scheme works on 1-bit, then the part of information obtained after encryption is an n-vector.

RLWE Cryptosystem: Stephen Harrigan proposed this cryptosystem in 2017 [24]. The keys of the RLWE-
based cryptosystems are generally the square root of the keys of the LWE-based cryptosystems. This is the
main supremacy of RLWE-based cryptosystems over LWE-based cryptosystems. An RLWE-based
cryptosystem uses a public-key of around 7000 bits [25] to get a 128-bit security level, while for the same
level of security, the LWE-based cryptosystem would require a key of 49 million bits. Rather, the key sizes
of RLWE-based cryptosystems are greater than the key sizes used in standard public-key cryptosystems. For
instance, ECC, Diffie-Hellman, and RSA require keys of 256 bits and 3072 bits respectively, for the security
level of 128-bit [25].

V. SIGNIFICANCE OF LBC

A detailed significance of LBC is given below:
Post-Quantum Security: Classical cryptosystems like RSA, ECC, and Diffie-Hallmen, etc., are based on
integer factorization and discrete logarithmic problems which are solvable on a quantum computer by
Shor’s algorithm [1]. On the other hand, Lattice-based cryptosystems are based on hard lattice problems,
like SVP, SIVP, LWE, and RLWE etc., that are trusted to be unsolvable on a quantum computer. So, LBC is
trusted to resist quantum computing attacks.
Efficiency and Scalability: Lattice-based cryptosystems are efficient and computationally faster than
classical cryptosystems since Lattice-based cryptographic primitives are based on mathematical operations
(like linear algebra) that are easier than a large number of exponentiations used in classical cryptosystems.
Strong Security Proofs: Lattice-based cryptographic primitives have strong security proofs because they
are based on hard lattice problems that stipulate the difficulty of solving various lattice problems.
Versatility: Lattice-based cryptography comprises the construction of several cryptographic algorithms,
like Authentication, Key Exchange Mechanisms, Encryption, and Digital Signatures etc. The versatility of
LBC makes it an important candidate for various applications on a broad scale.
NIST Standardization: In 2016, Lattice-based cryptography was approved by the National Institute of
Standards and Technology (NIST) as an important candidate that is secure against quantum computing
attacks. Thus, LBC is important for secure communications in the future.
Potential Applications: There are different sectors like government, military, commercial industries, etc.,
which are important for a country to be secured. LBC is believed to protect these sectors and ensure data
protection and the security of communications in the current quantum computing era.

Thus, LBC provides a track to secure our future from quantum computing attacks, where existing
cryptosystems are not secure.

VI. FIELDS OF INTEREST

Digital Money: This is the money that we transfer through a UPI, internet banking, and ATM, etc. This
money is also known as electronic money. During the transaction, the level of security is most important.
The security of the transaction depends on the encryption method. Thus, the method of encryption decides
the security of our digital money. The most secure encryption technique will secure our transactions from
hacking, and a little imperfection will take us to an enormous loss. Suppose, if possible, an anonymous user
enters the database using some flaw in encryption and adds three or more digits to the end of his account
balance. From this, he can get a huge amount of money than his account balance. Thus, you can think about
what he can do from a small imperfection or a small flaw in encryption.

Anonymous Remailers: Re-mailing is a practice in which people resend an email to other people who did
not open the first message. In this method, only the first remailer can have the identity of the sender, and
instead of trusting the operator, it uses many anonymous remailers to rely the message before sending it to
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the recipient. Thus, in this process, it is not possible from the endpoint to get the identity of the original

sender, and only the remailer who received the mail at first can recognize the original sender. Since all users

want anonymity for their information, they use such types of methods whose encryption depends on lattices.

Hardware Implementations: Presently, the research focuses on expanding effective hardware designs for

lattice-based cryptographic operations, specifically polynomial multiplication using the Number Theoretic

Transform (NTT).

Cryptographic Protocols: LBC is accustomed to constructing cryptographic protocols such as public-key

encryption, identity-based encryption, hash-based encryption, attribute-based encryption, lattice-based

encryption, key exchange, and digital signatures.

Real-World Applications: Some real-world applications are given below:

(i) Secure communications: Government and military, e-commerce, 10T devices, General encrypted
communication.

(ii) Privacy-preserving protocols: Anonymous remailers, Secure multi-party computation,
Homomorphic encryption.

(iii) Post-quantum cryptography: Replacement for RSA and ECC, Future-proofing security.

Other real-world applications are embedded devices, machine learning, and digital signatures. In essence,
LBC offers a versatile and robust approach to secure our digital world against future threats, particularly
those posed by quantum computers. So LBC is also known as post-quantum cryptography.

VII. CONCLUSION

The emergence of quantum computers has disturbed the security of standard public-key cryptosystems and
compelled us to turn to new cryptosystems that are safe in this quantum computing era. There are different
types of cryptosystems, like public-key, identity-based, hash-based, attribute-based, code-based, and lattice-
based, that can replace the classical public-key cryptosystems. Small devices that have confined storage are
not adequate to use lattice-based cryptosystems since the key sizes of these cryptosystems are greater than
that of the standard public-key cryptosystems. Lattice-based cryptosystems are notably more difficult to
understand compared to classical public-key cryptosystems. Since the lattices are more complicated than
integers so the encryption and decryption techniques in LBC are also more complicated than standard
public-key cryptosystems. Thus, researchers who have no mathematical background are not able to
understand these cryptosystems. But, if we can make these cryptosystems slightly accessible to researchers,
then these cryptosystems can be appropriate for cryptographic systems that are secure against quantum
computing attacks. Lattice-based cryptosystems are speedy, have less computational cost, and are powerful
against quantum computing attacks. So, in the present era, lattice-based cryptographic techniques are the
most useful techniques to secure our data and network communications.
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