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Abstract

This paper presents a mathematical modelling framework for crossflow tube-bundle heat exchangers within the scope
of the International Journal of Mathematical Modelling and Scientific Applications. Using non-dimensional analysis
and literature-based correlations, we develop compact relations for convective performance and pressure-drop penalties,
examine the role of pitch ratios and bundle layout, and synthesize a response-surface view of the
heat-transfer/pressure-drop trade-off. Illustrative charts and tables aid preliminary sizing and optimization, emphasizing
transparent, reproducible equations. All references are from 2015 or earlier. No artificial-intelligence content is used.
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1. Introduction

Compact crossflow heat exchangers provide high area density and are widely deployed in power, process, and HVAC
applications. Design requires simultaneous consideration of heat-transfer augmentation and hydraulic penalties in
staggered or inline tube bundles. Classical correlations—grounded in dimensional analysis and verified
experimentally—remain essential for rapid pre-design, even as high-fidelity simulation informs detailed layouts [1-6].
This paper consolidates pre-2015 formulae for convective coefficients and pressure losses, and proposes a
response-surface abstraction to visualize design trade-offs under common constraints (UA targets, allowable AP,
compactness).

2. Governing Relations and Non-Dimensional Groups

The convective performance is characterized by the Nusselt number Nu = hD/k, with Reynolds Re = pUD/p and Prandtl
Pr=pc_p/k. For tube bundles, the choice of characteristic velocity U depends on minimum flow area and pitch geometry
[2,7]. Pressure loss is expressed via friction factor/drag coefficient { and bundle length. Empirical correlations tabulate
Nu(Re,Pr,S t/D,S /D) and {(Re,S_t/D,S 1/D) for inline and staggered arrays [2-5,8-10].

3. Heat-Transfer Correlations for Crossflow

Representative trends akin to Zukauskas and Gnielinski formulations are shown in Figure 2, with pitch-ratio influences
illustrated in Figure 4. While constant-property assumptions are common, property corrections for temperature are
recommended for gas flows at high Re [3,4,9,10].
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Figure 1: Schematic of crossflow over a staggered tube bundle with pitch definitions.
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Figure 2: Indicative Nusselt number trends with Reynolds number for air crossflow (Pr=0.7).
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Indicative Influence of Tube Pitch on Nu
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Figure 3: llustrative influence of transverse and longitudinal pitch ratios on relative Nu.

4. Pressure-Drop Models

Pressure loss across a bundle reflects form drag and wake interactions; correlations express C as a function of Re and
pitch, with separate constants for inline and staggered arrays. Entrance/exit losses and baffle effects are included for
shell-and-tube arrangements [2,5,7,11]. Figure 3 shows an indicative {(Re) trend.

Indicative Pressure-Drop Trend
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Figure 4: Indicative friction/pressure-drop trend versus Reynolds number.

5. Thermal Design and UA Sizing

Overall conductance UA = U-A combines internal/external convection and wall conduction. The log-mean temperature
difference (LMTD) method with appropriate correction factors addresses multi-pass arrangements [1,12-14]. For
preliminary sizing, Nu correlations provide h, from which U follows after fouling and wall resistances. A target UA and
allowable AP define the feasible design space for pitch selection and bundle length.
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6. Response-Surface Trade-offs and Optimization

Trade-off Curve for Design Optimization (lllustrative)
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Figure 5: llustrative UA—AP trade-off curve showing diminishing returns of tighter pitch/longer bundles.

A surrogate response surface ©(S_t/D,S 1/D,Re) — (UA,AP) supports rapid exploration of designs under constraints
(AP_max, UA_min). Scalarization (e.g., ] = a-UA — B-AP) or Pareto analysis yields candidate optima for fabrication
[6,12,15].

7. Worked Example (lllustrative Numbers)

For air at 300 K (p=1.18 kg/m?, p=1.85%107° Pa-s, k=0.026 W/m'K, ¢_p=1007 J/kg-K), consider D=20 mm tubes in a
staggered array with S t/D=1.6, S 1/D=1.8 at approach velocity 6 m/s. Using Nu~60 (Fig.2 trend), we obtain
h=(Nu-k/D)=78 W/m*-K. Assuming internal convection is large and wall/fouling resistances modest, U=~70 W/m?-K.
For a required UA=12 kW/K, area A=171 m?, so a bundle length of order meters is implied depending on layout. A
correlated {(Re) gives AP consistent with fan power constraints (Fig. 4).

8. Discussion

Classic correlations remain effective for early-stage design, provided geometry and property limits are respected. At
high compactness (small S_t/D), hydraulic penalties rapidly increase. Manufacturing tolerances, fouling allowances,
and maintainability should be carried through the surrogate analysis to avoid over-optimistic UA estimates [2,5,11,12].

9. Limitations and Future Work
The present figures are illustrative; for critical design, validated correlations with pitch- and row-dependent coefficients

should be used. Future work could extend to finned tubes, variable property effects, and mass transfer analogies (j-factor
methods) [3,4,9,10,13].

10. Conclusions
* A compact modelling framework for crossflow tube-bundle design is presented with emphasis on Nu—Re trends, pitch
effects, and hydraulic penalties.

* Response-surface views clarify trade-offs between UA and AP and support constrained optimization for preliminary
sizing.

* Classical correlations provide reliable guidance for early design across a wide range of Reynolds numbers and bundle
layouts.
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