Abstract. Assume that F is a finite field of prime power order q (odd) and q is a quadratic residue modulo 2^n $(n \geq 3)$. Then $q = 8m + 1 (m = 2^{\alpha_0} p_1^{\alpha_1} p_2^{\alpha_2} ... p_r^{\alpha_r}, \alpha_i \geq 0)$. If $\alpha_0 = 0$ i.e. m is odd, then the ring $R_{2^n} = F[x]/\langle x^{2^n} - 1 \rangle$ has $4(n - 1)$ primitive idempotents. The explicit expressions for these primitive idempotents are obtained. The minimum distance, the dimension and the generating polynomial of the $4(n - 1)$ minimum cyclic codes of length 2^n generated by these primitive idempotents are also obtained.

AMS Mathematics Subject Classification (2000): 94B15, 16S34, 20C05.

Keywords: Cyclotomic cosets, Minimal cyclic codes, Generating polynomials, Primitive idempotents.

1. Introduction

Let $G = C_\theta = \langle g \rangle$ be a finite cyclic group of order θ and $F(= GF(q))$ be a field of order q, a power of its prime (odd) characteristic ρ, (say). The cyclic codes of length 2^n over F can be viewed as ideals in the semi-simple ring $R_{2^n} = F[x]/\langle x^{2^n} - 1 \rangle$. Here we assume that q is quadratic residue modulo 2^n. Then by Theorem 9.12 [3, p. 204], $q \equiv 1(\text{mod } 8)$ i.e. $q = 8m + 1 (m = 2^{\alpha_0} p_1^{\alpha_1} p_2^{\alpha_2} ... p_r^{\alpha_r}, \alpha_i \geq 0)$. By Lemma 1.1, order of q modulo 2^n is $\phi(2^n)/2^{\alpha_0 + 2} (n \geq \alpha_0 + 3)$. Let S be the set $\{0, 1, 2, ..., 2^n - 1\}$. For $a, b \in S$, the relation $a \equiv bq^i (\text{mod } 2^n)$, partitions S into $2^{\alpha_0 + 2}(n - \alpha_0 - 1)$ disjoint q-cyclotomic cosets modulo 2^n, denoted by $\Omega_{(i),i}$ and given by Theorem 1.2. In view of Theorem 42 and 53 of [5] and the theory of primitive idempotents developed in section 2 and 3 of Chapter 8 of [4] (generalize to non-binary case), an expression $e_{(i),i}(x)$ is idempotent iff $e_{(i),i}(\alpha\mu) = 0$ or 1, for $0 \leq \mu \leq 2^n - 1$, and the idempotent $e_{(i),i}(x)$ is primitive if and only if

$$e_{(i),i}(\alpha\mu) = \begin{cases} 1 & \text{if } \mu \in \Omega_{(i),i} \\ 0 & \text{otherwise} \end{cases}$$
where \(\alpha \) is a primitive \(2^n \)-th root of unity in some extension field of \(F \). In this paper we assume that \(\alpha_0 = 0 \) i.e. \(m \) is odd. Then \(R_{2^n} \) has \(4(n-1) \) primitive idempotents. The expressions for these primitive idempotents are obtained in Theorem 2.4. The codes generated by these primitive idempotents are minimal cyclic codes of length \(2^n \). These codes are described in section 4. Although we have already given these idempotents in [6] using a different terminology and approach, however in this paper to describe the codes generated, the expressions for these are verified by classical method of [1]. This enabled us to obtain generator polynomials of these codes which do not seem easy to obtain otherwise.

The case when \(m \) is even is interesting in itself and is dealt with a subsequent paper, with the view point that few basic results proved in this paper will frequently be used to prove the results in part - II, wherever and whenever needed.

Lemma 1.1. Let \(q = 8m + 1 \) \((m = 2^{\alpha_0} p_1^{\alpha_1} p_2^{\alpha_2} \ldots p_r^{\alpha_r}; \alpha_i \geq 0) \). Then, \(\phi(2^n) \) is the order of \(q \) modulo \(2^n \) \((n \geq \alpha_0 + 3) \).

Proof. It is easy to see that for \(n \geq \alpha_0 + 3 \),

\[
\frac{\phi(2^n)}{2^{\alpha_0+2}} = 2^{n-\alpha_0-3} = 2^n u + 1 \quad \text{where} \quad u \quad \text{is odd integer}
\]

If \(t \) is the order of \(q \) modulo \(2^n \), it then follows that

\[
t = 2^r \quad \text{where} \quad r \leq n - \alpha_0 - 3.
\]

If \(r = n - \alpha_0 - 3 \), then Lemma follows.

Now, let \(r < n - \alpha_0 - 3 \). As discussed above, we have

\[
q^{2^r} = 2^{r+\alpha_0+3} u + 1 \quad \text{for some odd integer} \quad u.
\]

But then \(2^n \) divides \(q^{2^r} - 1 \) implies that \(u \) is even, a contradiction.

Theorem 1.2. Suppose \(q = 8m + 1 \) \((m = 2^{\alpha_0} p_1^{\alpha_1} p_2^{\alpha_2} \ldots p_r^{\alpha_r}; \alpha_i \geq 0) \). Then \(2^{\alpha_0+2}(n - \alpha_0 - 1) \) \(q \)-cyclotomic cosets modulo \(2^n \) are given by:

(i) \(\Omega_0 = \{0\} \)

(ii) for \((n - \alpha_0 - 1) < i < n \) and \(1 \leq l \leq 2^{n-i} \),

\(\Omega_{(l, i)} = \{l, 2^{i-1}\} \)

(iii) for \(1 \leq i \leq n - (\alpha_0 + 2) \) and \(1 \leq l \leq 2^{\alpha_0+2}, \)
\[\Omega_{(l),i} = \{ 2^{i-1} (2^{a_0+3} \lambda + 2l - 1) : 0 \leq \lambda \leq 2^{n-(a_0+i+2)} - 1 \}. \]

Proof. By Lemma 1.1, the order of \(q \) modulo \(2^i \) is \(\frac{\phi(2^i)}{2^{a_0+2}} \). Therefore, the equivalence classes can easily be computed by the fact that for \(1 \leq i \leq n-(a_0+2) \),

\[\frac{\phi(2^{n-i+1})}{q^{2^{a_0+2}}} \equiv 1 \pmod{2^{n-i+1}} \]

and

\[2^{i-1} q^{2^{n-i-(a_0+2)}} \equiv 2^{i-1} \pmod{2^n}. \]

Notation 1.3. (i) For \(1 \leq i \leq n \) and \(1 \leq l \leq 4 \), denote by \(X_{(l),i} \) the elements \(\sum_{t \in \Omega_{(l),i}} x^i \) of \(R_2^n \). For any \(\eta \in F \) or in some extension of \(F \), we put

\[X_{(l),i}(\eta) = \sum_{t \in \Omega_{(l),i}} \eta^i \]

(ii) For \(1 \leq i \leq n-2 \) and \(1 \leq l, m \leq 4 \ (l \neq m) \), we put

(a) \(X_{(l,m),i} = X_{(l),i} - X_{(m),i} \)

(b) \(\delta_{i+3} = \{ X_{(l),i+3} + \ldots + X_{(4),i+3} \ldots + X_{(l),n} \} - \{ X_{(l),i+2} + \ldots X_{(4),i+3} \} \)

(iii) For \(1 \leq i \leq n \) and \(1 \leq l \leq 4 \), let

(a) \(S_{(l),i} = S / \Omega_{(l),i} \) (the set of elements of \(S \) not in \(\Omega_{(l),i} \)).

(b) \(E_{(l),i} \) denotes the codes generated by the primitive idempotents \(e_{(l),i} \).

(iv) Throughout in this paper the element \(\alpha \) denotes a primitive \(2^n \)-th root of unity in some field extension of \(F \) and \(\alpha^{2^{n-3}} = \gamma \) (say).

2. **Primitive Idempotents in \(R_2^n \)**

In this section, first we assume \(n \geq 3 \). As mentioned earlier that \(a_0 = 0 \) i.e. \(q \) is odd number (prime or prime power) of the form \(8m+1 \) (m - odd), a power of its prime (odd) characteristic \(\rho \). Then \(\rho \) is either of the type \(8v+1, 8v+3 \) or \(8v+5 \).

If \(\rho \) is of the form \(8v+1 \), then \(\gamma^0 = \gamma \). Therefore, \(\gamma \in GF(\rho) \).

If \(\rho \) is of the form \(8v+3 \) or \(8v+5 \), then \(\gamma^2 = \gamma \). Therefore, \(\gamma \in GF(\rho^2) \).
Lemma 2.1. If \(q = 8m + 1 \) \((m \text{ odd})\), then for \(1 \leq i \leq n - 2 \),

\[
\begin{align*}
I. \quad & X_{(1),i}(\alpha^j) = \begin{cases}
0 & \text{if } 2^{n-i-2} \text{ does not divide } j \\
2^{n-(i+2)} \gamma^\beta & \text{if } j = 2^{n-i-2} \mu \text{ and } \mu \equiv \beta \pmod{8} \text{ and } \beta = 1, 3, 5, 7 \\
-2^{n-(i+2)} & \text{if } j = 2^{n-i} \mu \text{ and } \mu \text{ is odd} \\
2^{n-(i+2)} & \text{if } 2^{n-i+1} | j
\end{cases} \\
(\text{i}) & \\
(\text{ii}) & \\
(\text{iii}) & \\
(\text{iv}) & \\
(\text{v}) &
\end{align*}
\]

II. \(X_{(2),i}(\alpha^j) = \begin{cases}
0 & \text{if } 2^{n-i-2} \text{ does not divide } j \\
2^{n-(i+2)} \gamma^3\beta & \text{if } j = 2^{n-i-2} \mu \text{ and } \mu \equiv \beta \pmod{8} \text{ and } \beta = 1, 3, 5, 7 \\
-2^{n-(i+2)} & \text{if } j = 2^{n-i} \mu \text{ and } \mu \text{ is odd} \\
2^{n-(i+2)} & \text{if } 2^{n-i+1} | j
\end{cases} \\
(\text{i}) & \\
(\text{ii}) & \\
(\text{iii}) & \\
(\text{iv}) & \\
(\text{v}) &
\]

III. \(X_{(3),i}(\alpha^j) = \begin{cases}
0 & \text{if } 2^{n-i-2} \text{ does not divide } j \\
2^{n-(i+2)} \gamma^2\mu & \text{if } j = 2^{n-i-2} \mu \text{ and } \mu \equiv \beta \pmod{8} \text{ and } \beta = 1, 3, 5, 7 \\
-2^{n-(i+2)} & \text{if } j = 2^{n-i} \mu \text{ and } \mu \text{ is odd} \\
2^{n-(i+2)} & \text{if } 2^{n-i+1} | j
\end{cases} \\
(\text{i}) & \\
(\text{ii}) & \\
(\text{iii}) & \\
(\text{iv}) & \\
(\text{v}) &
\]

IV. \(X_{(4),i}(\alpha^j) = \begin{cases}
0 & \text{if } 2^{n-i-2} \text{ does not divide } j \\
2^{n-(i+2)} \gamma^1\beta & \text{if } j = 2^{n-i-2} \mu \text{ and } \mu \equiv \beta \pmod{8} \text{ and } \beta = 1, 3, 5, 7 \\
-2^{n-(i+2)} & \text{if } j = 2^{n-i} \mu \text{ and } \mu \text{ is odd} \\
2^{n-(i+2)} & \text{if } 2^{n-i+1} | j
\end{cases} \\
(\text{i}) & \\
(\text{ii}) & \\
(\text{iii}) & \\
(\text{iv}) & \\
(\text{v}) &
\]

Proof. I(i) If \(2^{n-i-2} \) does not divide \(j \), then \(\alpha^{j2^{i+2}} \neq 1 \). By definition of \(\Omega_{(1),i} \), we have

\[
X_{(1),i}(\alpha^j) = \sum_{\lambda=0}^{2^{n-(i+2)}-1} \alpha^{j2^{i-1}(8\lambda+1)} = \alpha^{j2^{i-1}} \left[\frac{\alpha^{2^n j - 1}}{\alpha^{2^{i+2}} - 1} \right] = 0 .
\]

(ii) Let \(j = 2^{n-i-2} \mu \), where \(\mu \equiv \beta \pmod{8} \). Again by definition of \(\Omega_{(1),i} \), we have

\[
X_{(1),i}(\alpha^j) = \sum_{\lambda=0}^{2^{n-(i+2)}-1} \alpha^{j2^{i-1}(8\lambda+1)} = \sum_{\lambda=0}^{2^{n-(i+2)}-1} \alpha^{2^{n-3} \mu (8\lambda+1)}
\]
\[2^{n-(i+2)}_{-1} = \sum_{\lambda=0}^{\gamma^2} \gamma^\beta = 2^{n-i-2} \gamma^\beta. \]

(iii) If \(j = 2^{n-i-1} \mu \), where \(\mu \) is an odd number, then

\[X_{(1), n}^j(\alpha^j) = \sum_{\lambda=0}^{2^{n-(i+2)}_{-1}} \alpha^{j2^{i-1}(8\lambda+1)} = \sum_{\lambda=0}^{2^{n-(i+2)}_{-1}} \alpha^{2^{n-i-1} \mu 2^{i-1}(8\lambda+1)} = \sum_{\lambda=0}^{2^{n-(i+2)}_{-1}} \gamma^{2\mu} = 2^{n-i-2} \gamma^{2\mu}. \]

(iv) and (v) follows on similar lines as (iii).

II, III and IV follows on similar lines as I.

Lemma 2.2. If \(q = 8m + 1 \) (\(m \) – odd), then

I. \(X_{(1), n}^j(\alpha^j) = \begin{cases}
\gamma^2 & \text{if } j = 4k + 1 \\
-\gamma^2 & \text{if } j = 4k + 3 \\
-1 & \text{if } 2 \mid j \text{ but } 2^2 \nmid j \\
1 & \text{if } 2^2 \mid j
\end{cases} \) (i)

II. \(X_{(2), n}^j(\alpha^j) = \begin{cases}
-\gamma^2 & \text{if } j = 4k + 1 \\
\gamma^2 & \text{if } j = 4k + 3 \\
-1 & \text{if } 2 \mid j \text{ but } 2^2 \nmid j \\
1 & \text{if } 2^2 \mid j
\end{cases} \) (ii)

III. \(X_{(1), n}^j(\alpha^j) = \begin{cases}
-1 & \text{if } j \text{ is odd} \\
1 & \text{if } j \text{ is even}
\end{cases} \) (iii)

Proof. Follows trivially by definition of \(\Omega_{(1), n-1}, \Omega_{(2), n-1}, \Omega_{(1), n} \) and by notation 1.3(i).

Lemma 2.3. If \(q = 8m + 1 \) (\(m \) – odd), then for \(0 \leq k \leq n-1 \),

\[\{1+(X_{(1), k+2} + \ldots + X_{(4), k+2}) + (X_{(1), k+3} + \ldots + X_{(4), k+3}) + \ldots + (X_{(1), n-1} + X_{(2), n-1}) + X_{(1), n}\} - (X_{(1), k+1} + \ldots + X_{(4), k+1}) \}

\[= \begin{cases}
2^{n-k} & \text{if } 2^{n-k-1} \mid j \text{ but } 2^{n-k} \nmid j, \\
0 & \text{otherwise.}
\end{cases} \]

Proof. First suppose that \(0 \leq k \leq n-3 \), and \(2^{n-k-1} \mid j \text{ but } 2^{n-k} \nmid j \).

By Lemma 2.1 (I(iv), II(iv), III(iv), IV(iv)), we have
\[X_{(1),k+1}(\alpha^j) = X_{(2),k+1}(\alpha^j) = X_{(3),k+1}(\alpha^j) = X_{(4),k+1}(\alpha^j) = -2^{-n-(k+3)}. \]

As \(2^{n-k-1} \mid j \) but \(2^{n-k} \nmid j \), so, for any integer \(t, k + 2 \leq t \leq n - 2 \), \(2^{n-t+1} \mid j \) and hence, by Lemma 2.1 (I(v), II(v), III(v), IV(v)),
\[
X_{(1),1}(\alpha^j) = X_{(2),1}(\alpha^j) = X_{(3),1}(\alpha^j) = X_{(4),1}(\alpha^j) = 2^{n-(t+2)}.
\]

Since \(0 \leq k \leq n - 3 \) and \(2^{n-k-1} \mid j \), therefore by Lemma 2.2 (I(iv), II(iv) and III(ii))
\[
X_{(1),n-1}(\alpha^j) = X_{(2),n-1}(\alpha^j) = 1 \quad \text{and} \quad X_{(1),n}(\alpha^j) = 1.
\]

Thus for \(0 \leq k \leq n - 3 \), left side of (1) reduces to
\[
\{1 + 4 \left(2^{n-k-4} + 2^{n-k-5} + \ldots + 2^1 + 1\right) + 2 + 1\} - 4\{-2^{n-k-3}\} = 2^{n-k}.
\]

Now suppose that (i) \(2^{n-k-1} \mid j \) or (ii) \(2^{n-k} \mid j \).

(i) If \(2^{n-k-1} \mid j \), then for some integer \(r, 1 \leq r \leq n - k - 1 \), \(2^{n-k-r-1} \mid j \) but \(2^{n-k-r} \nmid j \).

First consider that \(r, 1 \leq r \leq n - k - 3 \). Then by repeated application of Lemma 2.1 and Lemma 2.2, for each \(t, 1 \leq t \leq k + r - 2 \),
\[
X_{(1),t}(\alpha^j) = X_{(2),t}(\alpha^j) = X_{(3),t}(\alpha^j) = X_{(4),t}(\alpha^j) = 0 \quad \text{and}
\]
\[
X_{(1),k+r-1}(\alpha^j) + X_{(2),k+r-1}(\alpha^j) + X_{(3),k+r-1}(\alpha^j) + X_{(4),k+r-1}(\alpha^j) = 0
\]
\[
X_{(1),k+r}(\alpha^j) + X_{(2),k+r}(\alpha^j) + X_{(3),k+r}(\alpha^j) + X_{(4),k+r}(\alpha^j) = 0
\]
\[
X_{(1),k+r+1}(\alpha^j) = X_{(2),k+r+1}(\alpha^j) = X_{(3),k+r+1}(\alpha^j) = X_{(4),k+r+1}(\alpha^j) = -2^{n-(k+r+3)}.
\]

Further, for \(k + r + 2 \leq t \leq n - 2 \),
\[
X_{(1),t}(\alpha^j) = X_{(2),t}(\alpha^j) = X_{(3),t}(\alpha^j) = X_{(4),t}(\alpha^j) = 2^{n-t-2} \quad \text{and}
\]
\[
X_{(1),n-1}(\alpha^j) = X_{(2),n-1}(\alpha^j) = 1 \quad \text{and} \quad X_{(1),n}(\alpha^j) = 1.
\]

If \(r = n - k - 2 \), then again by Lemma 2.1 and Lemma 2.2, for each \(t, 1 \leq t \leq n - 4 \),
\[
X_{(1),t}(\alpha^j) = X_{(2),t}(\alpha^j) = X_{(3),t}(\alpha^j) = X_{(4),t}(\alpha^j) = 0 \quad \text{and}
\]
\[
X_{(1),n-3}(\alpha^j) + X_{(2),n-3}(\alpha^j) + X_{(3),n-3}(\alpha^j) + X_{(4),n-3}(\alpha^j) = 0
\]
\[
X_{(1),n-2}(\alpha^j) + X_{(2),n-2}(\alpha^j) + X_{(3),n-2}(\alpha^j) + X_{(4),n-2}(\alpha^j) = 0
\]
\[
X_{(1),n-1}(\alpha^j) = X_{(2),n-1}(\alpha^j) = 1 \quad \text{and} \quad X_{(1),n}(\alpha^j) = 1
\]

If \(r = n - k - 1 \), then once again by Lemmas 2.1 and Lemma 2.2, for each \(t, 1 \leq t \leq n - 3 \),
\[
X_{(1),t}(\alpha^j) = X_{(2),t}(\alpha^j) = X_{(3),t}(\alpha^j) = X_{(4),t}(\alpha^j) = 0 \quad \text{and}
\]
\[
X_{(1),n-2}(\alpha^j) + X_{(2),n-2}(\alpha^j) + X_{(3),n-2}(\alpha^j) + X_{(4),n-2}(\alpha^j) = 0;
\]
\[
X_{(1),n-1}(\alpha^j) + X_{(2),n-1}(\alpha^j) = 0, \quad X_{(1),n}(\alpha^j) = -1.
\]
In all these cases, it can easily be proved that left side of (1) reduces to zero.

(ii) Let \(2^{n-k} \mid j \). Then, for any integer \(t, k+1 \leq t \leq n-2 \), \(2^{n-t+1} \mid j \). Therefore, by Lemma 2.1 (I(v), II(v), III(v), IV(v)), we have

\[
X_{(1), t}(\alpha^j) = X_{(2), t}(\alpha^j) = X_{(3), t}(\alpha^j) = X_{(4), t}(\alpha^j) = 2^{n-(t+2)}
\]

By Lemma 2.2 (I(iv), II(iv) and III(ii))

\[
X_{(1), n-1}(\alpha^j) = X_{(2), n-1}(\alpha^j) = 1 \quad \text{and} \quad X_{(1), n}(\alpha^j) = 1
\]

Thus, left side of (1) reduces to

\[
[\{1 + 4(2^{n-k-4} + 2^{n-k-5} + \ldots + 2^1 + 1) + 2 + 1\} - 4(2^{n-k-3})] = 0.
\]

Now if \(k = n-2 \) and \(2 \mid j \) but \(4 \nmid j \). Then, by Lemma 2.2 (I(iii), II(iii), III(iii))

\[
X_{(1), n-1}(\alpha^j) = X_{(2), n-1}(\alpha^j) = -1 \quad \text{and} \quad X_{(1), n}(\alpha^j) = 1.
\]

Thus left side of (1) reduces to, \([(1 + 1) - (-1 - 1)] = 2^2 \).

If \(j \) is odd, then by Lemma 2.2,

\[
X_{(1), n-1}(\alpha^j) + X_{(2), n-1}(\alpha^j) = 0 \quad \text{and} \quad X_{(1), n}(\alpha^j) = -1.
\]

Thus, left side of (1) reduces to zero in this case also.

If \(4 \mid j \), then again by Lemma 2.2,

\[
X_{(1), n-1}(\alpha^j) = X_{(2), n-1}(\alpha^j) = 1 \quad \text{and} \quad X_{(1), n}(\alpha^j) = 1.
\]

Therefore,

\[
[(1 + X_{(1), n}) - (X_{(1), n-1} + X_{(2), n-1})](\alpha^j) = 0.
\]

Finally, if \(k = n-1 \), then

\[
(1 - X_{(1), n}(\alpha^j)) = \begin{cases} 2 & \text{if } j \text{ is odd} \\ 0 & \text{if } j \text{ is even} \end{cases}
\]

holds trivially from lemma 2.3. III.

\[\Box\]

Theorem 2.4. If \(q = 8m + 1 \) (\(m \) – odd), then the \(4(n-1) \) primitive idempotents in \(R_{2^n} \) are given by:

\[
e_0 = \frac{1}{2^n}[1 + (X_{(1), 1} + \ldots + X_{(4), 1}) + (X_{(1), 2} + \ldots + X_{(4), 2}) + \ldots + (X_{(1), n-1} + X_{(2), n-1}) + X_{(1), n}],
\]

\[
e_{(1), n-1} = \frac{1}{2^n}[1 + (X_{(1), 3} + \ldots + X_{(4), 3}) + (X_{(1), 4} + \ldots + X_{(4), 4}) + \ldots + (X_{(1), n-1} + X_{(2), n-1}) + X_{(1), n} \\
- (X_{(1), 2} + \ldots + X_{(4), 2}) - \gamma^2 [(X_{(1), 1} - X_{(2), 1}) + (X_{(3), 1} - X_{(4), 1})],
\]

\[
e_{(2), n-1} = \frac{1}{2^n}[1 + (X_{(1), 3} + \ldots + X_{(4), 3}) + (X_{(1), 4} + \ldots + X_{(4), 4}) + \ldots + (X_{(1), n-1} + X_{(2), n-1}) + X_{(1), n} \\
- (X_{(1), 2} + \ldots + X_{(4), 2}) + \gamma^2 [(X_{(1), 1} - X_{(2), 1}) + (X_{(3), 1} - X_{(4), 1})],
\]
\[e_{(1)}, n = \frac{1}{2^n} \left[1 + (X_{(1),2} + \ldots + X_{(4),2}) + (X_{(1),3} + \ldots + X_{(4),3}) + \ldots + (X_{(1),n-1} + X_{(2),n-1}) + X_{(1),n} \right] \]

for \(1 \leq i \leq n-2 \),

\[e_{(1),i} = \frac{1}{2^{n-i+1}} [\delta_{i+1} - \gamma^2 (X_{(1,2),i+1} + X_{(3,4),i+1}) - \gamma X_{(2,4),i} - \gamma^3 X_{(1,3),i}] \]

\[e_{(2),i} = \frac{1}{2^{n-i+1}} [\delta_{i+1} + \gamma^2 (X_{(1,2),i+1} + X_{(3,4),i+1}) - \gamma X_{(1,3),i} - \gamma^3 X_{(2,4),i}] \]

\[e_{(3),i} = \frac{1}{2^{n-i+1}} [\delta_{i+1} - \gamma^2 (X_{(1,2),i+1} + X_{(3,4),i+1}) + \gamma X_{(1,3),i} + \gamma^3 X_{(2,4),i}] \]

\[e_{(4),i} = \frac{1}{2^{n-i+1}} [\delta_{i+1} + \gamma^2 (X_{(1,2),i+1} + X_{(3,4),i+1}) + \gamma X_{(1,3),i} + \gamma^3 X_{(2,4),i}] \]

Proof. It is trivial to see that

\[e_0(\alpha^j) = \begin{cases} 1 & \text{if } j = 0 \\ 0 & \text{otherwise.} \end{cases} \]

Now, we prove that for \(1 \leq i \leq n-2 \),

\[e_{(1),i}(\alpha^j) = \begin{cases} 1 & \text{if } j \in \Omega_{(1),n-i-1} \\ 0 & \text{otherwise.} \end{cases} \]

Let \(j \notin \Omega_{(1),n-i-1} \). Then

(i) if \(j = 0 \), result is trivial.

(ii) if \(j \neq 0 \), then let \(j \in \Omega_{(1),n-k-1} \cup \ldots \cup \Omega_{(4),n-k-1} (k \neq i) \). If \(0 \leq k \leq i-1 \),

then \(2^{n-i-1} \mid j \). By Lemma 2.3,

\[[(1 + (X_{(1),i-3} + \ldots + X_{(4),i+3}) + \ldots + (X_{(1),n-1} + X_{(2),n-1}) + X_{(1),n}) - (X_{(1),i+2} + \ldots + X_{(4),i+2}))](\alpha^j) = 0. \]

Further, for \(0 \leq k \leq i-3 \), since \(2^{n-i+1} \mid j \), then by Lemma 2.1 (I(v), II(v), III(v), IV(v))

\[X_{(1),i}(\alpha^j) = X_{(2),i}(\alpha^j) = X_{(3),i}(\alpha^j) = X_{(4),i}(\alpha^j) = 2^{n-(i+2)} \]

\[X_{(1),i+1}(\alpha^j) = X_{(2),i+1}(\alpha^j) = X_{(3),i+1}(\alpha^j) = X_{(4),i+1}(\alpha^j) = 2^{n-(i+3)} . \]

For \(k = i-2 \), \(2^{n-i} \mid j \), by Lemma 2.1,

\[X_{(1),i}(\alpha^j) = X_{(2),i}(\alpha^j) = X_{(3),i}(\alpha^j) = X_{(4),i}(\alpha^j) = -2^{n-(i+2)}, \]

\[X_{(1),i+1}(\alpha^j) = X_{(2),i+1}(\alpha^j) = X_{(3),i+1}(\alpha^j) = X_{(4),i+1}(\alpha^j) = 2^{n-(i+3)}. \]

For \(k = i-1 \), \(j \) is odd multiple of \(2^{n-i-1} \). Therefore, by Lemma 2.1 (I(iii),(iv), II(iii),(iv), III(iii),(iv), IV(iii),(iv))

\[X_{(1,3),i}(\alpha^j) = 0, \quad X_{(2,4),i}(\alpha^j) = 0; \]
and

\[X_{(12), i+1}(\alpha^j) = X_{(3,4), i+1}(\alpha^j) = 0. \]

Hence, if \(0 \leq k \leq i - 1 \), then

\[e_{(1), i}(\alpha^j) = 0. \]

Now, if \(i + 2 \leq k \leq n - 2 \), then \(2^{n-i-3} \nmid j \). By Lemma 2.1 (I(i), II(i), III(i), IV(i)), we have

\[X_{(1,3), i}(\alpha^j) = X_{(2,4), i}(\alpha^j) = 0 \]

and

\[X_{(1,2), i+1}(\alpha^j) = X_{(3,4), i+1}(\alpha^j) = 0. \]

and by Lemma 2.3,

\[\{I + (X_{(1), i+3} + \ldots + X_{(4), i+3}) + \ldots + (X_{(1), n-i} + X_{(2), n-i}) + X_{(1), n} - (X_{(1), i+2} + \ldots + X_{(4), i+2})\}(\alpha^j) = 0. \]

Now, if \(k = i + 1 \), then \(j = 2^{n-i-3} \mu \), where \(\mu \) is odd number. By Lemma 2.1

\[X_{(1,3), i}(\alpha^j) = X_{(2,4), i}(\alpha^j) = 0. \]

\[(X_{(1,2), i+1}(\alpha^j) + X_{(3,4), i+1}(\alpha^j)) = 0. \]

and by Lemma 2.3

\[\{I + (X_{(1), i+3} + \ldots + X_{(4), i+3}) + \ldots + (X_{(1), n-i} + X_{(2), n-i}) + X_{(1), n} - (X_{(1), i+2} + \ldots + X_{(4), i+2})\}(\alpha^j) = 0. \]

Hence, for \(i + 1 \leq k \leq n - 2 \),

\[e_{(1), i}(\alpha^j) = 0. \]

(iii) Finally let, \(j \in \Omega_{(2), n-i-1} \cup \Omega_{(3), n-i-1} \cup \Omega_{(4), n-i-1} \).

If \(j \in \Omega_{(2), n-i-1} \), then \(j = 2^{n-i-2} \mu \), where \(\mu \equiv 3 \pmod{8} \).

Therefore, by Lemma 2.1, we have

\[X_{(1,3), i}(\alpha^j) = 2^{n-i-1} \gamma^3, \quad X_{(2,4), i}(\alpha^j) = 2^{n-i-1} \gamma \]

and

\[X_{(1,2), i+1}(\alpha^j) = 2^{n-i-2} \gamma^2 \mu, \quad X_{(3,4), i+1}(\alpha^j) = 2^{n-i-2} \gamma^2 \mu. \]

Since \(2^{n-i-2} \nmid j \) but \(2^{n-i-1} \nmid j \), therefore by Lemma 2.3,

\[\{I + (X_{(1), i+3} + \ldots + X_{(4), i+3}) + \ldots + (X_{(1), n-i} + X_{(2), n-i}) + X_{(1), n} - (X_{(1), i+2} + \ldots + X_{(4), i+2})\}(\alpha^j) = 2^{n-i-1}. \]

Hence,

\[e_{(1), i}(\alpha^j) = 0. \]

Similarly, if \(j \in \Omega_{(3), n-i-1} \cup \Omega_{(4), n-i-1} \) then

\[e_{(1), i}(\alpha^j) = 0. \]

Now if \(j \in \Omega_{(1), n-i-1} \), then \(j = 2^{n-i-2} \mu \), where \(\mu \equiv 1 \pmod{8} \). Therefore, by Lemma 2.1
\[X_{(1,3),i}(\alpha^j) = 2^{n-i-1}\gamma \quad \text{and} \quad X_{(2,4),i}(\alpha^j) = 2^{n-i-1}\gamma^3 \]

and

\[X_{(1,2),i+1}(\alpha^j) = 2^{n-i-2}\gamma^2 \mu \quad \text{and} \quad X_{(3,4),i+1}(\alpha^j) = 2^{n-i-2}\gamma^2 \mu \]

and by Lemma 2.3.

\[\{1 + (X_{(1,i+3} + \ldots + X_{(4,i+3)} + \ldots + (X_{(1),n-1} + X_{(1),n-1}) + X_{(1),n}) \]

\[- (X_{(1),i+2} + \ldots + X_{(4),i+2})\} \gamma^j = 2^{n-i-1}. \]

Therefore, \(e_{(1),i}(\alpha^j) = 1. \)

Similarly, for \(1 \leq i \leq n - 2 \) and \(2 \leq l \leq 4 \)

\[e_{(l),i}(\alpha^j) = \begin{cases} 1 & \text{if } j \in \Omega_{(l),n-i-1} \\ 0 & \text{otherwise.} \end{cases} \]

Now, we shall prove that

\[e_{(1),n-1}(\alpha^j) = \begin{cases} 1 & \text{if } j \in \Omega_{n-1}^1 \\ 0 & \text{otherwise.} \end{cases} \]

Let \(j \in \Omega_{(1),n-1}. \) Then, \(j = 2^{n-2} \mu, \) where \(\mu \equiv 1 \pmod{8}. \)

By Lemma 2.3, for \(k = 1, \)

\[\{1 + (X_{(1),3} + \ldots + X_{(4),3}) + \ldots + X_{(1),n} - (X_{(1),2} + \ldots + X_{(4),2}) \} \gamma^j = 2^{n-1} \]

Also by Lemma 2.1 (I(iii), II(iii), III(iii), IV(iii)),

\[X_{(1),1}(\alpha^j) = 2^{n-3}\gamma^2 \mu \quad \text{and} \quad X_{(2),1}(\alpha^j) = -2\gamma^2 \mu \quad ; \]

\[X_{(3),1}(\alpha^j) = 2^{n-3}\gamma^2 \mu \quad \text{and} \quad X_{(4),1}(\alpha^j) = -2\gamma^2 \mu \quad . \]

Therefore,

\[e_{(1),n-1}(\alpha^j) = 1. \]

If \(j \not\in \Omega_{(1),n-1}. \) Then by Lemma 2.3 (for \(k = 1 \))

\[\{1 + (X_{(1),3} + \ldots + X_{(4),3}) + \ldots + (X_{(1),n-1} + X_{(2),n-1}) + X_{(1),n} \]

\[- (X_{(2),1} + \ldots + X_{(4),2}) \} \gamma^j = 0. \]

By Lemma 2.1,

\[(X_{(1),1}(\alpha^j) - X_{(2),1}(\alpha^j)) + (X_{(3),1}(\alpha^j) - X_{(4),1}(\alpha^j)) = 0. \]

Hence, \(e_{(1),n-1}(\alpha^j) = 0. \)

Therefore,
\[
\begin{align*}
e_{(1),n-1}(\alpha^j) &= 1 \quad \text{if } j \in \Omega_{(1),n-1} \\
&= 0 \quad \text{otherwise.}
\end{align*}
\]

Similarly,
\[
\begin{align*}
e_{(2),n-1}(\alpha^j) &= 1 \quad \text{if } j \in \Omega_{(2),n-1} \\
&= 0 \quad \text{otherwise.}
\end{align*}
\]

The fact that
\[
e_{(1),n}(\alpha^j) = 1 \quad \text{if } j \in \Omega_{(1),n} \\
= 0 \quad \text{otherwise.}
\]
follows immediately by taking \(k = 0 \) in Lemma 2.3.

Hence in view of as remarked in section 1, Theorem follows.

3. Generating polynomials

Let \(E_{(l),i} \) denotes the ideals of \(R_{2^n} \) generated by the primitive idempotents \(e_{(l),i} \), given by theorem 2.4. As noted earlier \(E_{(l),i} \) are cyclic codes of length \(2^n \). In this section, we obtain the explicit expressions for the generating polynomial of these codes.

Theorem 3.1. Suppose \(q = 8m + 1 \) (\(m \)- odd). Then

(I) for \(1 \leq i \leq n-2 \),
\[
\begin{align*}
g_{(1),i}(x) &= \sum_{m=0}^{2^{n-(i+2)}-1} x^{m2^i+2} (x^{2^{i-1}} + \gamma)(x^{2^i} + \gamma^2)(x^{2^{i+1}} - 1) \quad (1) \\
g_{(2),i}(x) &= \sum_{m=0}^{2^{n-(i+2)}-1} x^{m2^i+2} (x^{2^{i-1}} + \gamma^3)(x^{2^i} - \gamma^2)(x^{2^{i+1}} - 1) \quad (2) \\
g_{(3),i}(x) &= \sum_{m=0}^{2^{n-(i+2)}-1} x^{m2^i+2} (x^{2^{i-1}} - \gamma)(x^{2^i} + \gamma^2)(x^{2^{i+1}} - 1) \quad (3) \\
g_{(4),i}(x) &= \sum_{m=0}^{2^{n-(i+2)}-1} x^{m2^i+2} (x^{2^{i-1}} - \gamma^3)(x^{2^i} - \gamma^2)(x^{2^{i+1}} - 1) \quad (4)
\end{align*}
\]

are the generating polynomials of the codes \(E_{(l),i} \) \((1 \leq l \leq 4)\) generated by the primitive idempotents \(e_{(l),i} \) given by Theorem 2.4.

(II) The polynomials
\[
\begin{align*}
g_{(1),n-1}(x) &= \sum_{m=0}^{2^{n-2}-1} x^{2^m}(x + \gamma^2)(x^2 - 1) \quad (5)
\end{align*}
\]
\[g_{(2), n-1}(x) = \sum_{m=0}^{2^{n-2}-1} x^{2^m} (x - \gamma^2) (x^2 - 1) \] (6)

are the generating polynomials of the code \(E_{(1), n-1} \) and \(E_{(2), n-1} \) respectively generated by the primitive idempotents \(e_{(1), n-1} \) and \(e_{(2), n-1} \) given by Theorem 2.4.

(III) The polynomials

\[g_0(x) = \sum_{i=0}^{2^n-1} x^i \]

\[g_{(1), n}(x) = \sum_{i=0}^{2^n-1} (-1)^{i+1} x^i \]

are the generating polynomials of the code \(E_0 \) and \(E_{(1), n} \) generated by the primitive idempotents \(e_0 \) and \(e_{(1), n} \) given by Theorem 2.4.

Proof. I. From (1), we can also write

\[g_{(1), i}(x) = \frac{1 - x^{2^n}}{1 - x^{2^i+2}} (x^{2^i-1} + \gamma) (x^{2^i} + \gamma^2) (x^{2^i+1} - 1) \] (7)

Let \(j \in S_{(1), n-i-1} (1 \leq i \leq n-2) \).

(i) If \(2^{n-i-1} \mid j \), then \(\alpha_j^{2^i+1} - 1 = 0 \).

Hence, from (1), \(g_{(1), i}(\alpha_j) = 0 \).

(ii) If \(j \in \Omega_{(2), n-i-1} \cup \Omega_{(3), n-i-1} \cup \Omega_{(4), n-i-1} \)

then \(j = 2^{n-i-2} \mu \), where \(\mu \equiv 3 \) or \(5 \) or \(7 \pmod{8} \), so

\[[(x^{2^i-1} + \gamma) (x^{2^i} + \gamma^2)](\alpha_j^i) = (\alpha_j^{2^{n-3}} + \gamma)(\alpha_j^{2^{n-2}} + \gamma^2) \]

becomes zero.

Hence, again from (1)

\[g_{(1), i}(\alpha_j^i) = 0. \]

(iii) If \(2^{n-i-2} \nmid j \), then \(\alpha_j^{2^i+2} - 1 \neq 0 \). It then follows from (7) that \(g_{(1), i}(\alpha_j^i) = 0 \).

As \(\deg(g_{(1), i}(x)) = 2^n - 2^{i-1} \mid S_{(1), n-i-1} \) \(\), so the elements of \(S_{(1), n-i-1} \) are the only roots of \(g_{(1), i}(x) \). But then \(e_{(1), i}(\alpha_j^i) = 0 \) (proof of Theorem 2.4) for all \(j \in S_{(1), n-i-1} \) implies that \(g_{(1), i}(x) \) is the generating polynomial of the code \(E_{(1), i} \).

Similarly, \(g_{(2), i}(x) \), \(g_{(3), i}(x) \) and \(g_{(4), i}(x) \) are the generating polynomials of the code \(E_{(2), i} \), \(E_{(3), i} \) and \(E_{(4), i} \) respectively.
II. From (5), we can also write
\[
g_{(1),n-1}(x) = \frac{1-x^{2^n}}{1-x^4}(x + \alpha^{2^{n-2}})(x^2 - 1). \tag{8}
\]

Let \(j \in S_{(1),n-1} = \mathcal{S}/\mathcal{O}_{(1),n-1} \)

(i) If \(2^{n-1} \mid j \), then \(\alpha^{2^j} - 1 = 0 \).

Hence, from (5)
\[
g_{(1),n-1}(\alpha^j) = 0.
\]

(ii) If \(j \in \mathcal{O}_{(2),n-1} \), then \(j = 3.2^{n-2} \).

Therefore,
\[
[(x + \gamma^2)(x^2 - 1)](\alpha^j) = (\alpha^{3.2^{n-2}} + \gamma^2)(\alpha^{2.3.2^{n-2}} - 1) \text{ becomes zero.}
\]

Hence again from (5),
\[
g_{(1),n-1}(\alpha^j) = 0.
\]

(iii) If \(2^{n-2} \nmid j \), then \(\alpha^{j.2^{n-2}} - 1 \neq 0 \). It then follows from (8) that
\[
g_{(1),n-1}(\alpha^j) = 0.
\]

As \(\deg g_{(1),n-1}(x) = 2^n - 1 = |S_{(1),n-1}| \), so the elements of \(S_{(1),n-1} \) are the only roots of \(g_{(1),n-1}(x) \). But then \(e_{(1),n-1}(\alpha^j) = 0 \) (proof of Theorem 2.4) for all \(j \in S_{(1),n-1} \) implies that \(g_{(1),n-1}(x) \) is the generating polynomial of the code \(E_{(1),n-1} \).

Similarly, \(g_{(2),n-1}(x) \) is the generating polynomial of the code \(E_{(2),n-1} \).

III. Trivially, \(g_0(x) \) is the generating polynomial of the code \(E_0 \).

By Theorem 2.4,
\[
e_{(1),n}(\alpha^j) = \begin{cases} 1 & \text{if } j \in \mathcal{O}_{(1),n} \\ 0 & \text{otherwise} \end{cases}
\]

Trivially,
\[
g_{(1),n}(\alpha^j) = \begin{cases} -2^n & \text{if } j \in \mathcal{O}_{(1),n} \\ 0 & \text{otherwise} \end{cases}
\]

Therefore, \(g_{(1),n}(x) \) is the generating polynomial of the code \(e_{(1),n} \). \(\blacksquare \)
4. Dimension and minimum distance of the codes $E_{(l),i}$

By Theorem 3.1, for $(1 \leq i \leq n - 2, 1 \leq l \leq 4),$
\[
\text{deg.} (g_{(l),i}(x)) = 2^n - 2^{i-1} \quad \text{and} \quad \text{deg.} (g_{(1),n-i}(x)) = \text{deg.} (g_{(2),n-i}(x)) = \text{deg.} (g_{(1),n}(x)) = \text{deg.} (g_0(x)) = 2^n - 1.
\]

By Theorem 7.2 [2, p.42],
\[
\dim. (E_{(l),i}) = 2^n - \text{deg.} (g_{(l),i}(x)) = 2^n - 2^n + 2^{i-1} = 2^{i-1}.
\]

Trivially,
\[
\dim. (E_{(1),n-1}) = \dim. (E_{(2),n-1}) = \dim. (E_{(1),n}) = \dim. (E_0) = 1.
\]

Theorem 4.1. If $E_{(l),i}$ denotes the cyclic codes of length 2^n, generated by the primitive idempotents $e_{(l),i}$, given by theorem 2.4. Then

(i) minimum distance of the codes $E_{(l),i}$ $(1 \leq i \leq n-2$ and $1 \leq l \leq 4)$ are 2^{n-i+1}.

(ii) minimum distance of the codes $E_{(1),n-1}$, $E_{(2),n-1}$, $E_{(1),n}$ and E_0 are 2^n.

Proof. Let $E_{(1),i}$ be the cyclic code of length 2^n generated by the polynomial
\[
g_{(1),i}(x) = \sum_{m=0}^{2^{n-i+2}-1} x^m x^{i+2} (x^{2^{i-1}} + \gamma) (x^2 + \gamma^2) (x^{2^{i+1}} - 1).
\]

Here each pair of non-zero entries of generating polynomial are separated by $(2^{i-1} - 1)$ consecutive zero’s. As discussed above
\[
\dim. (E_{(1),i}) = 2^{i-1}
\]

Therefore, any codeword of $E_{(1),i}$ is of the form
\[
\gamma_0 \{ g_{(1),i}(x) \} + \gamma_1 \{ x^2 g_{(1),i}(x) \} + \gamma_2 \{ x^2 g_{(1),i}(x) \} + \ldots + \gamma_{2^{i-1} - 1} \{ x^{2^{i-1}} g_{(1),i}(x) \}, \quad \gamma_i \in F
\]

Since in such a combination the non-zero entries never coincide, therefore weight of generating polynomial is always less than the weight of every codeword. Hence , minimum distance of pol. $(g_{(1),i}(x)) = \text{wt.} (g_{(1),i}(x)) = 8.2^{n-i-2} = 2^{n-i+1}$

minimum distance of codes $(E_{(1),i}) = 2^{n-i+1}$
Similarly, for \((1 \leq i \leq n - 2; \, 2 \leq l \leq 4)\)

minimum distance of codes \((E_{(l,i)}) = 2^{n-i+1}\)

and minimum distance of code \((E_{(1),n-1}) = \text{minimum distance of code } (E_{(2),n-1}) = 2^n\).

Now we find minimum distance of the codes \(E_{(1),n}\) and \(E_0\) generated by the polynomials \(g_{(1),n}(x)\) and \(g_0(x)\) respectively.

Let \(m_{(1),n}(x) \neq 0\) be a minimum code word in \(E_{(1),n}\). Then

\[
m_{(1),n}(x) = a(x)g_{(1),n}(x) \quad \text{for some} \quad a(x) = a_0 + a_1x + a_2x^2 + \ldots + a_{2^{n-1}}x^{2^{n-1}}
\]

or

\[
m_{(2),n}(x) = a_0g_{(1),n}(x) + a_1xg_{(1),n}(x) + a_2x^2g_{(1),n}(x) + \ldots + a_{n-1}x^{2^{n-1}}g_{(1),n}(x)
\]

\[
= a_0g_{(1),n}(x) - a_1g_{(1),n}(x) + a_2g_{(1),n}(x) + \ldots - a_{n-1}g_{(1),n}(x)
\]

\[
= (a_0 - a_1 + a_2 + \ldots - a_{n-1})g_{(1),n}(x)
\]

Hence, \(Wt(m_{(1),n}(x)) = Wt(g_{(1),n}(x)) = 2^n\)

and so \(g_{(1),n}(x)\) is a minimum weight code word in \(E_{(1),n}\).

Trivially \(g_0(x)\) is a minimum weight code word in \(E_0\).

Example 4.2. Let \(q = 41\) and \(n = 4\). Then \(q\)-cyclotomic cosets modulo \(2^4\) are:

\[
\Omega_0 = \{0\} \quad ; \quad \Omega_{(1),4} = \{8\} \quad ; \quad \Omega_{(1),3} = \{4\}, \quad \Omega_{(2),3} = \{12\};
\]

\[
\Omega_{(1),1} = \{1,9\}, \quad \Omega_{(2),1} = \{3,11\}, \quad \Omega_{(3),1} = \{5,13\}, \quad \Omega_{(4),1} = \{7,15\};
\]

\[
\Omega_{(1),2} = \{2\}, \quad \Omega_{(2),2} = \{6\}, \quad \Omega_{(3),2} = \{10\}, \quad \Omega_{(4),2} = \{14\};
\]

By Theorem 2.4 primitive idempotents in \(R_{24}\) are:

\[
e_0 = 18(1 + x + x^2 + \ldots + x^{15})
\]

\[
e_{(1),4} = 18(1 + x^2 + x^4 + \ldots + x^{12} + x^{14}) + 23(x + x^3 + \ldots + x^{13} + x^{15})
\]

\[
e_{(1),3} = 18(1 + x^4 + x^8 + x^{12}) + 23(x^2 + x^6 + x^{10} + x^{14})
\]

\[
+ 2(x + x^5 + x^9 + x^{13}) + 39(x^3 + x^7 + x^{11} + x^{15})
\]

\[
e_{(2),3} = 18(1 + x^4 + x^8 + x^{12}) + 23(x^2 + x^6 + x^{10} + x^{14})
\]

\[
+ 39(x + x^5 + x^9 + x^{13}) + 2(x^3 + x^7 + x^{11} + x^{15})
\]

\[
e_{(1),1} = 18(1 + x^8) + 2(x^2 + x^{10}) + 23(x^4 + x^{12}) + 39(x^6 + x^{14})
\]

\[
+ 6(x + x^9) + 28(x^3 + x^{11}) + 35(x^5 + x^{13}) + 13(x^7 + x^{15})
\]

\[
e_{(2),1} = 18(1 + x^8) + 39(x^2 + x^{10}) + 23(x^4 + x^{12}) + 2(x^6 + x^{14})
\]

\[
+ 28(x + x^9) + 6(x^3 + x^{11}) + 13(x^5 + x^{13}) + 35(x^7 + x^{15})
\]
\[e_{(3),1} = 18(1 + \alpha^8) + 2(\alpha^2 + \alpha^{10}) + 23(\alpha^4 + \alpha^{12}) + 39(\alpha^6 + \alpha^{14}) + 35(\alpha + \alpha^9) + 13(\alpha^3 + \alpha^{11}) + 6(\alpha^5 + \alpha^{13}) + 28(\alpha^7 + \alpha^{15}) \]

\[e_{(4),1} = 18(1 + \alpha^8) + 39(\alpha^2 + \alpha^{10}) + 23(\alpha^4 + \alpha^{12}) + 2(\alpha^6 + \alpha^{14}) + 13(\alpha + \alpha^9) + 35(\alpha^3 + \alpha^{11}) + 28(\alpha^5 + \alpha^{13}) + 6(\alpha^7 + \alpha^{15}) \]

\[e_{(1),2} = 36 + 12\alpha^2 + 4\alpha^4 + 15\alpha^6 + 5\alpha^8 + 29\alpha^{10} + 37\alpha^{12} + 37\alpha^{14} \]

\[e_{(2),2} = 36 + 15\alpha^2 + 37\alpha^4 + 12\alpha^6 + 5\alpha^8 + 26\alpha^{10} + 4\alpha^{12} + 29\alpha^{14} \]

\[e_{(3),2} = 36 + 29\alpha^2 + 4\alpha^4 + 26\alpha^6 + 5\alpha^8 + 12\alpha^{10} + 37\alpha^{12} + 15\alpha^{14} \]

\[e_{(4),2} = 36 + 26\alpha^2 + 37\alpha^4 + 29\alpha^6 + 5\alpha^8 + 15\alpha^{10} + 4\alpha^{12} + 12\alpha^{14} \]

Here \(\alpha(=\sqrt{3}) \) is a primitive 16th root of unity s.t. \(\alpha^2 \in GF(41) \).

The parameter of the codes \(E_{(i),j} \) are:

<table>
<thead>
<tr>
<th>Code</th>
<th>Dimension</th>
<th>Minimum Distance</th>
<th>Generating Polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_0)</td>
<td>1</td>
<td>16</td>
<td>(1 + \alpha + \alpha^2 + \alpha^3 + ... + \alpha^{13} + \alpha^{14} + \alpha^{15})</td>
</tr>
<tr>
<td>(E_{(1),4})</td>
<td>1</td>
<td>16</td>
<td>(40(1 + \alpha^2 + \alpha^6 + ... + \alpha^{14}) + (\alpha + \alpha^3 + ... + \alpha^{15}))</td>
</tr>
<tr>
<td>(E_{(1),3})</td>
<td>1</td>
<td>16</td>
<td>(9(1 + \alpha^4 + \alpha^8 + \alpha^{12}) + 40(\alpha + \alpha^5 + \alpha^9 + \alpha^{13}) + 32(\alpha^2 + \alpha^6 + \alpha^{10} + \alpha^{14}) + (\alpha^3 + \alpha^7 + \alpha^{11} + \alpha^{15}))</td>
</tr>
<tr>
<td>(E_{(2),3})</td>
<td>1</td>
<td>16</td>
<td>(32(1 + \alpha^4 + \alpha^8 + \alpha^{12}) + 40(\alpha + \alpha^5 + \alpha^9 + \alpha^{13}) + 9(\alpha^2 + \alpha^6 + \alpha^{10} + \alpha^{14}) + (\alpha^3 + \alpha^7 + \alpha^{11} + \alpha^{15}))</td>
</tr>
<tr>
<td>(E_{(1),2})</td>
<td>2</td>
<td>8</td>
<td>(14 + 32\alpha^2 + 38\alpha^4 + 40\alpha^6 + 27\alpha^8 + 9\alpha^{10} + 3\alpha^{12} + \alpha^{14})</td>
</tr>
<tr>
<td>(E_{(2),2})</td>
<td>2</td>
<td>8</td>
<td>(32 + 9\alpha^2 + 14\alpha^4 + 40\alpha^6 + 3\alpha^8 + 32\alpha^{10} + 9\alpha^{12} + \alpha^{14})</td>
</tr>
<tr>
<td>(E_{(3),2})</td>
<td>2</td>
<td>8</td>
<td>(27 + 32\alpha^2 + 3\alpha^4 + 40\alpha^6 + 14\alpha^8 + 9\alpha^{10} + 32\alpha^{12} + \alpha^{14})</td>
</tr>
<tr>
<td>(E_{(4),2})</td>
<td>2</td>
<td>8</td>
<td>(3 + 9\alpha^2 + 27\alpha^4 + 32\alpha^6 + 38\alpha^8 + 32\alpha^{10} + 32\alpha^{12} + \alpha^{14})</td>
</tr>
<tr>
<td>(E_{(1),1})</td>
<td>1</td>
<td>16</td>
<td>(14 + 32\alpha^2 + 38\alpha^4 + 40\alpha^6 + 27\alpha^8 + 9\alpha^{10} + 3\alpha^{12} + \alpha^{14})</td>
</tr>
<tr>
<td>(E_{(2),1})</td>
<td>1</td>
<td>16</td>
<td>(38 + 9\alpha + 14\alpha^2 + 40\alpha^3 + 3\alpha^4 + 32\alpha^5 + 27\alpha^6 + \alpha^7 + 38\alpha^8)</td>
</tr>
<tr>
<td>(E_{(3),1})</td>
<td>1</td>
<td>16</td>
<td>(9 + 32\alpha + 3\alpha^2 + 40\alpha^3 + 32\alpha^4 + 9\alpha^5 + 38\alpha^6 + \alpha^7 + 9\alpha^8)</td>
</tr>
</tbody>
</table>
\[E_{(4),1} \quad 1 \quad 16 \quad 3 + 9x + 27x^2 + 40x^3 + 38x^4 + 32x^5 + 14x^6 + x^7 + 3x^8 \]
\[\quad + 9x^9 + 27x^{10} + 40x^{11} + 38x^{12} + 32x^{13} + 14x^{14} + x^{15}. \]

References

