
© 2023 IJRAR July 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR1DBP010 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 56

INFLUENCES OF MACHINE LEARNING

ALGORITHM FACTORSING SOFTWARE

FAULT PREDICTION

P.Sivapadmini, Dharani

Assistant Professor, UG Scholar

Department of CSE

Marri Laxman Reddy Institute of Technology

Hyderabad

Abstract
Software Engineering is a branch of computer science that enables
tight communication between system software and training it as
per the requirement of the user. We have selected seven distinct
algorithms from machine learning techniques and are going to test
them using the data sets acquired for NASA public promise
repositories. The results of our project enable the users of this
software to bag up the defects are selecting the most efficient of
given algorithms in doing their further respective tasks, resulting
in effective results.

1. INTRODUCTION

Nowadays developing software systems is a difficult process that

involves planning, analyzing, designing, implementing, testing,

integrating, and maintaining. A software engineer’s work is

developing a system in time with a limited budget which is done in

the planning phase. While doing the development process we can

have a few defects like not proper design, where the logic is poor,

data handling is improper, etc. and these defects cause errors which

lead to re-do the work, increasing in development and cost of

maintenance These all are responsible for the decrease in customer

satisfaction. In this point of view, faults are grouped on the basis of

sternness, corrective and advanced actions are taken as per the

sternness defined. The selected machine learning algorithms for

comparison are

(i) Support Vector Machine (SVM): This algorithm tries

to model data so that the examples of separate

categories are divided by a clear gap that is as wide as

possible. Apart from linear classification, they can also

perform non-linear classification efficiently.

(ii) Random Forests (RF): It is an ensemble learning

method consisting of multiple decision trees and

outputs the class that is the mode or mean of the

trees' prediction. While building, it uses feature

randomness to ensure that the individual trees are

uncorrelated.
(iii) Naive Bayes: It is a probabilistic classifier based on

the Bayes theorem, which works on the primary

assumption that features are conditionally

independent.

(iv) Radial Basis Function (RBF)

(v) Multilayer Perceptron (MLP)

(vi) Multinomial Naive Bayes

(vii) Bagging

1.1 Problem statement:

There are a great variety of studies that have developed and

applied statistical and machine learning based models for

defect prediction in software systems. we have used logistic

regression to examine the effect of the suite of object-

oriented design metrics on the prediction of fault-prone

classes and used the neural network in toe modules of large

telecommunication systems as fault-prone or not and

compared it with a non-parametric discriminant model. The

results of their study have shown that compared to the non-

parametric discriminant model, the predictive accuracy of

the neural network model had a better result. Then made a

case study by using regression trees to classify fault-prone

modules of enormous telecommunication systems

1.2 Motivation:
Developing a software system is an arduous process that

contains planning, analysis, design, implementation,

testing, integration, and maintenance. A software engineer

is expected to develop a software system on time and within

a limited budget predetermined during the planning phase.

During the development process, there can be some defects

such as improper design, poor functional logic, improper

data handling, wrong coding, etc. and these defects may

cause errors in whitehead to rework, increases in

development and maintenance costs decrease in customer

satisfaction.

1.3 Objective:
Software Engineering is a comprehensive domain since it

requires tight communication between system stakeholders

and delivering the system to be developed within a

determined time and a limited budget. Delivering the

customer requirements include securing high performance

by minimizing the system. Thanks to the effective prediction

of system defects on the front line of the project life cycle,

the project’s resources and the effort of the software

developers can be allocated more efficiently for system

development and quality assurance activities

2. LITERATURE SURVEY
The rapid growth of search machine learning has resulted in

the creation of different learning algorithms that can be used

across different applications. Additionally, the ability of

machine learning algorithms to solve real-world problems

will often determine its ultimate value making the

reproduction and application of algorithms in new tasks

critical to the field’s progress. However, the current research

http://www.ijrar.org/

© 2023 IJRAR July 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR1DBP010 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 57

landscape features numerous publications regarding software

fault prediction model development. These can be placed into

categories based on ensemble, clustering, and classification

methods.

Use this document as a template by simply typing your text

into it.

2.1 BASED ON CLASSIFICATION

METHODS EzgiErturk the data set for the

experiment are collected from the PROMISE

Software Engineering Repository and applied

McCabe software metrics. The algorithm they are

using in the experiment was SVM, ANN, and

ANFIS (new adaptive model proposed), the

performance measure was 0.7795, 0.8685, and

0.8573 respectively. Another successful paper was

published by Surndha Naidu et al., the primary goal

of this paper was to find the total number of defects

in order to minimize time and cost. The defect was

classified into five parameters Volume, Program

length, Difficulty, Effort, and Time Estimator. They

were using the ID3 classification algorithm, to

classify defects. Malkit Singh et al. Explored the

fault-prone of software early software testing by

developing a model with the Levenberg-Marquardt

algorithm-based neural network tool for data

collected from the PROMISE repository of

empirical software engineering data and then

comparing the accuracy of LM with the polynomial

function-based neural network. The experiment

showed that Levenberg-Marquardt (LM) has higher

accuracy (88.1%). So, that neural network-based

machine learning has good accuracy. Saiqa Aleem

et al., in this study they were used around fifteen

data sets (AR1, AR6, CM1, KC1, KC3, etc.) with

various machine learning methods. Measured the

performance of each method and finally conclude

that SVM, MLP, and bagging had high accuracy

and performance According to Venkata U.B et al.

They evaluate different predictive models for real-

time software defect datasets experiment showed

that there are not any exact techniques exist for each

data set; however, IBL and 1 R were relatively

better consistency in prediction accuracy compared

to with other methods. According to Martin

Shepperd et al. investigation, in order to predict and

evaluate software defects, they were using a novel

benchmark framework. In the evaluation stage,

different learning schemes are evaluated according

to the scheme selected. Then, in the prediction

stage, the best learning scheme is used to build a

predictor with all historical data, and the predictor

is finally used to predict defects in the new data.

2.2 BASED ON CLUSTERING METHODS
Xi Tan et al. experiments the software defect

prediction model based on the function cluster for

the purpose of improving the performance of the

model. After applying this method, the researcher

upgrades the performance 31.6

% to 99.2% recall and precision from 73.8 % to

91.6%. Jaspreet Kaur et al. investigated that, the

fault proneness of object-oriented programming via

applying k-mean based clustering approach and

finally they conclude as they have got 62.4% of

accuracy. Model building using clustering

algorithms (EM and X-means) from three promise

repository data (AR3, AR4, AR5) with an objective

of predicting software faults. The first thing in the

experiment setting was normalizing the data set into

0 to 1, then an attribute selection algorithm was

applied that was Cfs SubsetEval and without

attribute reduction. Experiment results showed that

X-mean more have accuracy (90.48another model

AR3 without attribute reduction.

BASED ON ENSEMBLE APPROACHES
Model building using an ensemble approach was

conducted by Shanthini et al., The purpose of this

research was to address software fault prediction

using an ensemble approach. The data set was

categorized into three which are method level, class

level, and package levels. They were using NASA

KC1 data for both method and class level metrics

and eclipse data for package level with an ensemble

method (bagging, boosting, stacking, and voting).

The experiment result shows that bagging performs

better for method and package level data. Method

level result using AUC- curve performance

measurement was bagging (0.809), boosting

(0.782), staking (0.79), and voting (0.63).

Similarly, the performance measure of package-

level data using AUC-Curve was bagging (0.82),

boosting (0.78), staking (0.72), and voting (0.76).

In the case of class-level metrics, the performance

result could not be similar to other metrics using

AUC-Curve bagging (0.78), boosting (0.74),

staking (0.8), and voting (0.82). According to

Arvinder Kaur et al., the main purpose of the

research was to evaluate the application of random

forest for predicting fault-prone classes using open-

source software. The researcher used JEdit open-

source software with object-oriented metrics to

conduct studies. Based on the experiment result the

accuracy of RF is 74.24 % and its precision is 72 %,

its recall is 79 %, its F-measure is 75 %, and its

AUC is 0.81. YI PENG et al., The goal of the paper

was to assess the quality of ensemble approaches in

software fault prediction with an analytical

hierarchal process. The researcher uses 13 different

performance measures for 10 publicly NASA MDP

data. An ensemble method in his paper was

Bagging, Boosting, and stacking Based on the

performance measure AdaBoost of decision tree

gives the best result accuracy of 92.53 %, in this

case, decision tree as base classifier.

3. SYSTEM ANALYSIS

3.1 Existing System:
There are a great variety of studies that have

developed and applied statistical and machine

learning-based models for defect prediction in

software systems. Logistic regression was used to

examine the effect of the suite of object-oriented

design metrics on the prediction of fault-prone

classes. The neural network was used in toe

modules of large telecommunication systems as

fault prone or not and compared with a non-

parametric discriminant model. The results of the

study have shown that compared to the non-

parametric discriminant model, the predictive

accuracy of the neural network model had a better

result.

3.2 Proposed System: In this paper, the

author is evaluating the performance of various

machine learning algorithms such as SVM,

Bagging, Naïve Bayes, Multinomial Naïve Bayes,

RBF, Random Forest, and Multilayer Perceptron

Algorithms to detect bugs or defects from Software

Components. Defects will occur in software

http://www.ijrar.org/

© 2023 IJRAR July 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR1DBP010 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 58

components due to poor coding which may increase

software development and maintenance cost and

this problem leads to dissatisfaction from

customers. To detect defects from software

components various techniques were developed but

right now machine learning algorithms are gaining

lots of popularity due to their better performance.

So, in this paper, also the author is using machine

learning algorithms to detect defects from software

modules. In this, the paper author is a use dataset

from NASA Software components and the name of

those datasets are CM1 and KC1. I am also using

the same datasets to evaluate the performance of

above mention algorithms.Advantages of the

proposed system:
1. Predicted model is used for evaluating the

performance measures.

2. We can apply various datasets in this project. But

we are using NASA datasets in our project.

3. Software defects are classified to the extent.

4. Advance measures can be taken in the selection

of algorithm

5. Provides Better results.

6. Identify defects in the early stage of the project

which in turn result in customer loyalty.

4. CONCLUSION & FUTURE WORK
In this experimental study, seven machine learning

algorithms are used to predict the defectiveness of

software systems before they are released to the real

environment and/or delivered to the customers, and

the best category which has the most capability to

predict the software defects are tried to find while

comparing them based on software quality metrics

which are accuracy, precision, recall, and F- measure.

We carry out this experimental study with four

NASA datasets which are PC1, CM1, KC1, and KC2.

These datasets are obtained from the public

PROMISE repository.

The results of this experimental study indicate that

tree- structured classifiers in other words ensemble

learners which are Random Forests and Bagging have

better defect prediction performance compared to

their counterparts. Especially, the capability of

Bagging in predicting software defectiveness is

better. When applied to all datasets, the overall

accuracy, precision, recall and F-measure of Bagging

is within 83,7- 94,1%, 81,3-93,1%, 83,7- 94,1% and

82,4-92,8% respectively.

For the PC1 dataset, Bagging outperforms all other

machine learning techniques in all quality metrics.

However, Naive Bayes outperforms Bagging in

precision and F-Measure while Bagging outperforms

it in accuracy and recall for the CM1 dataset. Random

Forests outperforms all machine learning techniques

in all quality metrics for the KC1 dataset. Finally, for

the KC2 dataset, MLP outperforms all machine

learning techniques in all quality metrics for the KC2

dataset.

5. REFERENCES
 [1] Victor R Basili, Lionel C. Briand, and Walcelio

L Melo. ´ A validation of object-oriented design

metrics as quality indicators. IEEE Transactions on

software engineering, 22(10):751–761, 1996.

[2] Evren Ceylan, F Onur Kutlubay, and Ayse B

Bener. Software defect identification using machine

learning techniques. In 32nd EUROMICRO

Conference on Software Engineering and Advanced

Applications (EUROMICRO’06), pages 240–247.

IEEE, 2006.

[3] Karim O Elish and Mahmoud O Elish. Predicting

defectprone software modules using support vector

machines. Journal of Systems and Software,

81(5):649– 660, 2008.

[4] Norman Fenton, Paul Krause, and Martin Neil.

Software measurement: Uncertainty and causal

modeling. IEEE software, 19(4):116–122, 2002.

[5] Lan Guo, Yan Ma, Bojan Cukic, and Harshinder

Singh. Robust prediction of fault-proneness by

random forests. In 15th International Symposium on

Software Reliability Engineering, pages 417–428.

IEEE, 2004.

[6] Taghi M Khoshgoftaar, Edward B Allen, and

Jianyu Deng. Using regression trees to classify fault-

prone software modules. IEEE Transactions on

reliability, 51(4):455–462, 2002.

[7] Taghi M Khoshgoftaar, Edward B Allen, John P

Hudepohl, and Stephen J Aud. Application of neural

networks to software quality modeling of a very large

telecommunications system. IEEE Transactions on

Neural Networks, 8(4):902–909, 1997.

[8] Sunghun Kim, Hongyu Zhang, Rongxin Wu, and

Liang Gong. Dealing with noise in defect prediction.

In 2011 33rd International Conference on Software

Engineering (ICSE), pages 481–490. IEEE, 2011.

[9] Yan Ma, Lan Guo, and Bojan Cukic. A statistical

framework for the prediction of fault-proneness. In

Advances in Machine Learning Applications in

Software Engineering, pages 237–263. IGI Global,

2007.

[10] Ruchika Malhotra. A systematic review of

machine learning techniques for software fault

prediction. Applied Soft Computing, 27:504–518,

2015.

[11] Jinsheng Ren, Ke Qin, Ying Ma, and Guangchun

Luo. On software defect prediction using machine

learning. Journal of Applied Mathematics, 2014,

2014.

http://www.ijrar.org/

