A Proficient Approach To Maximize The Entire Weight In VM Allocation And Optimize The Energy By Using DVFS

1 Somen Kumar, 2 Rahul Kumar Singh, 3 Sonu Kumar Yadav, 4 Anwar Basha H.

1,2,3 Student, Department Of Computer Science And Engineering, SRM Institute of Science and Technology, Vadapalani, Chennai, India
4 Assistant Professor, SRM Institute of Science and Technology, Vadapalani Chennai, India

Abstract—This paper gives the brief information of Cloud Computing to allocate the task to suitable VM so as to locate the Maximum share(weight). It depends on the way that when allotting Cloudlets(task) in Virtual Machine(VM) which is inside Data-Center, Request may Only Consume some bit of Total Capacity of a Single Hardware Resource(Physical Machine), So we Model WISWCS(Weight Interval Scheduling With Capacity Sharing) utilizing Cloudsim which is a Cloud Information Service(CIS) . In Traditional WIS(Weight Interval Scheduling) the solicitation compares to an UN-Interrupted Interval with Start and Finish Time related with various weight. It essentially discovers Subset of commonly Compatible Interval . Now in our proposed System WISWCS which is like Traditional System with an alternate methodology of sharing Capacity whenever if their absolute Capacity doesn't outperform the all out limit of a machine. As far as we could possibly know this model have a Computation Complexity of O(nd). We likewise Aim to locate the absolute Optimized vitality for this proposed System.

Keywords- Cloud Computing; Virtual Machine Allocation, Weight Optimization; energy Optimization using WISWCS(Weight Interval Scheduling with Capacity Sharing)

I. Introduction

Cloud computing which is on-request openness of PC assets, especially data storing and handling vitality, without direct powerful organization by the customer. The term is commonly used to portray(describe) server farms accessible to numerous clients over the Internet. Huge mists(Cloud), transcendent today, regularly have capacities dispersed over numerous areas from focal(central) servers. DAIRS treats framework information, CPU, memory and move limits facilitated for both virtual machines and physical machines[6].

There are three forms of Cloud Computing SaaS, PaaS and IaaS. Right now are sharp centered around the piece of Cloud Computing which is IaaS(Infrastructure as a Service).

Cloud computing permits organizations to stay away from or limit in advance IT framework costs. Advocates additionally guarantee that cloud computing permits endeavors(aim) to get their applications ready for action quicker, with improved sensibility and less upkeep, and that it emergency IT groups to all the more quickly modify assets to meet fluctuating and erratic demand, providing the burst registering ability: high figuring energy at specific times of pinnacle(peak) request.

The Main target for distributed computing is to permit clients to take profit by advancements, without the requirement for profound information about or aptitude with every single one of them. The cloud intends to reduce expenses, and enables the clients to concentrate on their center business as opposed to being blocked by IT deterrents. The fundamental emerging innovation for distributed computing is virtualization. Virtualization programming isolates(separate) a physical processing device into at least one "virtual" device, every one of which can be effectively utilized and figured out how to perform registering(computing) tasks. With Operating system–level virtualization basically making an adaptable arrangement of various autonomous(independent) computing devices, idle processing assets can be assigned and utilized all the more proficiently.

Virtualization gives the readiness required to accelerate IT activities and operations, and reduce cost by expanding foundation usage. Autonomic computing mechanisms the procedure through which the client can arrange assets on-request. By limiting client inclusion, robotization accelerates the procedure, decreases work costs and diminishes the chance of human mistake.
II. Related Work

There have been past works in cloud computing on dispensing Cloudlets in Virtual Machine inside Data-Center utilizing CloudSim which is a Cloud Information Service(CIS) and WIS(Weight Interval Scheduling) the solicitation compares to an Un-Interrupted Interval with Finish and Start Time associated with their weight. M.Arkin and B.Silverberg are creators of the paper titled Scheduling Job with Fixed End And Start Time[1]. Right now propose an approach where they break down an issue in which each activity has a fixed beginning and end time with benefit to expand the completion of Jobs. We use this methodology for each occupations which has start and end time to discover the Interval length. Another paper titled [2] energy-Aware Provisioning of Virtual Machines(VM) in Cloud Services. Rajkumar Buyya and Kyong Hoon Kim have utilized a strategy in which they have diminished energy utilization not exclusively to diminish working expenses, yet additionally to improve the framework's unwavering quality. Their methodology is to make VM machines in data centres utilizing Dynamic Voltage Frequency Scaling (DVFS) plots by giving threshold value for efficient energy management. Amit Kumar Dasand Md. Abdur in their paper titled energy-effective Scheduling Algorithms for Data-Center Resources[3]. They have utilized a strategy of measure of amount of energy which is consumed to execute high-level computation tasks. This issue is fathomed by utilizing an energy saving technique system dependent on Centralized employment helps in decreasing vitality utilization.

III. Working

In this project we aim to assign Cloudlet to the appropriate VM inside DataCentre. We also use DVFS (Dynamic Voltage Frequency and Scaling)[4] to save energy through out the process of allocating the task to VM.

A. Architecture Description

Architecture of WISWCS inside Cloud-sim basically consist of User-Interface , Virtual Machine service, Cloud Service and Network as shown in Fig[1]. User Interface inside Cloud-sim contain cloud-let and Virtual Machine. Cloud-let are nothing but task which will be assigned to Virtual Machine inside Data-Centre inside host. One Data-Centre contain many host and in turn one host contain (n) number of Virtual Machine(VM). Now VM hold services like Cloud-let Execution mean all the task (Cloud-let) is being assigned to VM by the help of VM Management management is a software which communicate to hardware. Now Coming to Cloud Services These are the service which cloud gives to its user like VM Provision,CPU-Allocation, Memory-Allocation, Storage-Allocation, Bandwidth-Allocation. Based on the Service Cloud Resource which is being shared to different cloud-let with the help of Network Topology. Network Topology act as a communication Medium between different layers like User Interface Layer, VM Service, Cloud Service. These all comes under CIS(Cloud Information Server).

Now With the help of Scheduling policy the DataCentreBroker allocate the Cloud-let to VM. Scheduling informs the DataCentreBroker that which task is to be arranged in which manner.
B. Weighted Interval Scheduling With Capacity Sharing (WISWCS)

In WISWCS (Weight Interval Scheduling with Capacity Sharing) we tend to obtain the Optimized weight by taking the subset which is not overlapping (Resource Overlapping) to other task (Cloud-let). Every Job (J) has a kickoff time \(St(J) \) with respect to final time \(Ft(j) \) associated with weight \(W(J) \) and Capacity \(C(J) \). In Order to Obtain the Optimized Schedule we have to choose those Cloud lets(task) that doesn't Overlap to other task at that particular time interval.[7]

We additionally realize that in the event that all the Weight related with the assignments is equivalent to 1, at that point we can straightforwardly get the enhanced load by utilizing Greedy Algorithms. This Condition where all the weight are equal to 1 are generally termed as ISP (Interval Schedule Planning). For Existing System (Weight Interval Scheduling) WIS we can directly use Dynamic Programming in order to find Optimized weight and Subsets of task(Cloud-let) allocated to particular VM(Virtual Machine). To find Optimized Weight WIS basically sort all the tasks in increasing order based upon their finish time using the recursive formula for jobs (J) in time interval \(T \).

\[
OPT_{WTJ} = \text{MAX} (W_J + OPT_{WTpJ}, OPT_{WTJ-1})
\]

where \(p(j) \) stands for the Largest Index

\(OPT_{WT(j)} \) is the Optimised Weight.

C. Difference between WIS and WISWCS (Weighted Interval Scheduling With Capacity Sharing)

There is a minute difference between WIS and WISWCS is that assets such as resources can be shared by different tasks if and if the total Capacity of the Job at any time interval does not surpass the total capacity of the assets such as resource[7]. The WISWCS allocate cloud-let to VM based on two factors. First it checks whether two jobs doesn't overlap to each other at a certain time Interval and if it lies at the time Interval which is same to other task then resource allocation at that particular time Interval must be different in order to allocate task to same VM[5]. Task is Show as \(\{ ID, St(i), Ft(i), Ca(i), Wt(i) \} \) where \(St(i) \) refers to start_time, \(Ft(i) \) refers to final/finish time , \(Ca(i) \) refers to capacity of the request and \(Wt(i) \) refers to Weight of that particular
resource in Weight Interval Scheduling with Capacity Sharing. Once we get the Optimized weight we use DVFS in order to find the energy Optimization by allocating tasks to appropriate VM when the required resource of that task is idle in that particular VM.

D. Parameters which is Proportional to WISWCS

Capacity and Duration in WISWCS should be directly or Indirectly Proportional to Weight which is associated with that task. WIS is the exception case of WISWCS where all weights of the tasks are set equal as for the total capacity of the machine[7]. Hence WISWCS is much more difficult in compare to WIS. For that we can’t use Dynamic Programming because sharing task make their approach to find Optimized solution in different manner.

Formula to find Max Weight in WISWCS.

\[Wt_i = rate_i - cost_i = a \times Ca_i(Fi_i - St_i) \]

Where \(Wt \) is termed as Weight of the task.

\(Ca \) is termed as Capacity of that Task.

\(Fi \) is termed as Finish Time

\(St \) is termed as Start time.

Which can be further reduced to value which is relative to the product of its own capacity and duration.

E. Algorithm of WISWCS.

1: Cloudlet are created by using start_time, finish_time, Capacity and Weight.
2: Initialize the ArrayList<Cloudlet> and HashSet<String> so as to spare the subset of task in the given machine.
3: Once CloudLet have been loaded into Arraylist, Use comparator to sort the list in descending order based on the weight of the cloudlet. If two task have same weight then shorter task is given priority.
4: Initialise machine=1;
5: for i=1 to n start the loop
6: Check if { Cloudlet(i) can share capacity with d-th machine }
7: Assign Cloudlet(i) to machine d; \(Wt[d]=Wt[d]+Wt[i] \);
8: If the cloudlet cannot be allocated to the subset of that VM by using hashset \(Sh(d)=Sh(d) \cup i.id \)
9: Else
10: Create new Machine d=d+1
11: Allocate i to d+1;
\[Wt[d]=Wt[d]+Wt[i];Sh(d)=Sh(d) \cup i.id; \]
12: Endif
13: Endfor
14: Sort \(Wt \) in decreasing order and values are stored in subset \(S \) inside Hashset.
15: Once we get the Optimised weight then By sending the data to cloudlet and performing allocation. By using DVFS (Dynamic Voltage Frequency and Scaling) we calculate the total power Optimisation by the formula:

\[\text{Power} = (\text{Execution Time} \times \text{Power Consumed}) + (\text{End Time} - \text{Execution Time}) \times \text{PowerIdle}; \]
F. Algorithm Explanation:

Here from the Fig [2] diagram there are six tasks [W1,W2,W3,W4,W5,W6] which are also known as cloudlet. They have been assigned with different weights and capacity. So, we will sort all the cloudlets in descending order according to their weights using comparator so we will get task in the order [W4,W3,W2,W1,W5,W6]. After that we will create first virtual machine according to our requirement. Starting from the first VM that is VM(0) in which we will allocate our first task W4 which has the highest weight. If two cloudlets have same weight then we will give priority to those task which have less capacity.

So W4 task is assigned to VM(0). Moving to the second task from the order that is W2,W3 since both are having same weight we will give priority to W3 because it is having less capacity. Before assigning to VM we will check two factors i.e. whether the subsequent tasks becomes the subset of the previous base task and they are non-overlapping with the corresponding resource then only we will assign that particular task in the same VM or else we will allocate that task to newly created VM. So W3 is allocated to VM(0) Likewise we will check for the other tasks in same manner accordingly. So According to that VM1 subset are {W4,W3,W2,W5} and VM2 are {W1,W6} because W1 and W6 are overlapping to W4.

G. Time Complexity of Proposed System.
The calculation initially sorts all interim in non-expanding request of their loads (if two solicitations have same loads, the one with shorter span is viewed as first, in any case breaking ties self-assertively), this takes O(mlogm) time where m is the quantity of interim (requests). Then the calculation discovers sharing good interims for all interims as appeared in line 5 to line 13, this takes O(md) worse Complexity. where d is the machine.

The worst case is that all interim have the biggest required limit, same beginning time and finish-time. At that point all interims are not sharing good, consequently finding a machine for a job to designate requirements O(d) steps, n interims need O(md) steps. At long last the algorithm find ideal arrangement utilizing a straightforward correlation with costs O(d*logd) time. So all together the calculation for the proposed System takes O(md) time where typically m> d.

IV. Result

In this topic we are going to show our final Execution. This project is created in order to maximize the total weights (share) of the cloudlet in that particular VM inside CloudSim. Initially the Data is send to Cloudlet using Collections.ArrayList and Map. Once the data is send to Cloudlet the task will be created. The task in turn is send to Broker where all the task is saved. After that the Broker send task to DataCentreBroker which help in assigning the Cloudlet to appropriate VM based on resource availability. We used DVFS in order to find how much energy every particular task consume based on the Execution time, Energy Consumption and End time. It is also used in order to Find how much total Energy is saved through-out the process. Energy Consumption can be dictated by the formula Fig(4.1).
Energy= \((\text{Execution Time} \times \text{Energy Consumed}) + (\text{End Time}\,-\,\text{Execution Time}) \times \text{Energy Idle})\).

Fig 4.1 Energy Optimization

We had look at the exhibition of the Existing System (WIS) with our Proposed System. The result which is appeared in Fig(4.2) and Fig(4.3) which take the input cloudlet and display the total weight in much optimised in comparison to Traditional Method.

<table>
<thead>
<tr>
<th>ID</th>
<th>Start</th>
<th>Finish</th>
<th>Capacity</th>
<th>Weight</th>
<th>Total Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0.05</td>
<td>50</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td>0.05</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>19</td>
<td>0.25</td>
<td>100</td>
<td>112</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>100</td>
<td>0.125</td>
<td>200</td>
<td>225</td>
</tr>
</tbody>
</table>

Fig 4.2: WISWCS Optimization

<table>
<thead>
<tr>
<th>ID</th>
<th>Start</th>
<th>Finish</th>
<th>Weight</th>
<th>Total Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>19</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
</tbody>
</table>

Fig 4.3: WIS (Traditional Method)

Fig(4.4):-Final Output of WISWCS with Energy Optimisation
V. Conclusion

This paper had extended the algorithm of WISWCS by Optimizing the energy with the use of DVFS (Dynamic Voltage Frequency and Scaling) Using the CloudSim to predict weight Optimization and energy Optimization in VM allocation from the input cloudlet.

VI. References
4. VM Selection using DVFS Technique to Minimize Energy Consumption in Cloud System Sambit Kumar Mishra1, Sonali Mishra1, Santosh Kumar Bharti2,978-1-7281-0259-7/18/$31.00 ©2018 IEEE DOI 10.1109/ICIT.2018.00064