IJRAR.ORG

E-ISSN: 2348-1269, P-ISSN: 2349-5138

INTERNATIONAL JOURNAL OF RESEARCH AND **ANALYTICAL REVIEWS (IJRAR) | IJRAR.ORG**

An International Open Access, Peer-reviewed, Refereed Journal

BONDING PROTOCOLS IN LAMINATE VENEERS

¹AGALYA BALUSWAMY, ²ABDULLA NABRAZ, ³DR.AHNAF ABDULLA, ⁴DR.DIPIN P.P, ⁵DR.LINO PAUL

¹STUDENT, ²STUDENT, ³SENIOR LECTURER, ⁴SENIOR LECTURER, ⁵SENIOR LECTURER ¹DEPARTMENT OF PROSTHODONTICS AND CROWN AND BRIDGE

¹MAHE INSTITUTE OF DENTAL SCIENCES & HOSPITAL CHALAKKARA, PALLOR, MAHE - 673 310 U.T OF PUDUCHERRY

ABSTRACT:

Laminate veneers have become a popular and minimally invasive solution for achieving highly aesthetic dental restorations. The longevity and success of these restorations are largely dependent on the quality and durability of the bonding interface between the veneer and tooth structure. Bonding protocols have evolved significantly with advancements in adhesive technology, offering greater predictability and clinical success. The bonding process involves multiple critical steps: proper tooth surface preparation, internal veneer surface treatment, adhesive application, and resin cementation under controlled conditions. Enamel etching with phosphoric acid remains the gold standard for enhancing micromechanical retention. Selective enamel etching is now commonly practiced to reduce postoperative sensitivity while maintaining strong enamel bonds. Dentin, if exposed, requires gentle handling with compatible adhesive systems to ensure integrity of the hybrid layer. Universal adhesives, which can be used in total-etch, self-etch, or selective-etch modes, have simplified clinical protocols without compromising effectiveness. Surface treatment of ceramic veneers, typically lithium disilicate, includes hydrofluoric acid etching followed by silane application, which enhances chemical bonding to resin cements. Light-cure resin cements are generally preferred for veneers due to superior colour stability and working time.

KEY WORDS: Tooth preparation, veneer preparation, etching, bonding, laminate veneers.

INTRODUCTION:

The pursuit of ideal dental aesthetics has become a fundamental goal in modern dentistry, with laminate veneers emerging as one of the most sought-after restorative options for enhancing smiles. These ultra-thin ceramic or composite restorations are bonded to the labial surfaces of anterior teeth, offering remarkable improvements in shape, colour, alignment, and overall appearance with minimal invasiveness. However, the long-term success of laminate veneers is not solely dependent on their aesthetic appeal or material properties. Rather, it hinges significantly on the bonding protocol followed during placement. The bonding procedure represents the critical interface between the veneer and the tooth structure, ensuring mechanical retention, marginal integrity, and the prevention of microleakage or debonding over time. Advances in adhesive dentistry have introduced a range of materials and techniques—each with specific indications and requirements—that affect the performance and durability of veneer restorations. An ideal bonding protocol must integrate proper tooth surface preparation, conditioning of the ceramic surface, selection of the appropriate adhesive resin cement, and strict moisture control. Additionally, it should be tailored to the type of ceramic used—whether feldspathic porcelain, lithium disilicate, or other CAD/CAM-based materials since each has unique etching. Despite the evolution of adhesive systems and resin cements, clinical challenges such as hypersensitivity,

postoperative debonding, and colour instability may still arise due to lapses in protocol adherence. Therefore, a thorough understanding of bonding protocols, grounded in both scientific evidence and clinical experience, is essential for practitioners aiming to deliver predictable, long-lasting aesthetic outcomes.

LAMINATE VENEERS:

Laminate veneers are thin shells made of porcelain or composite resin that are bonded to the front surface of teeth to improve their appearance. They are a popular cosmetic dentistry option because they can enhance the colour, shape, size, or length of teeth, giving patients a brighter, more uniform smile.(1)

I. **TYPES OF VENEERS USED:**

i. FELDSPATHIC VENEERS:

Parameter	Details	
Composition	Glass-based ceramic made primarily of feldspar, quartz, and kaolin	
Material Type	Hand-layered feldspathic porcelain	
Esthetics	Excellent; highly translucent and mimics natural enamel	
Thickness	Ultra-thin (0.3–0.7 mm)	
Tooth Preparation	Minimal or no preparation required	
Fabrication Method	Manually layered by skilled dental technicians and fired in a porcelain oven	
Customization	Highly customizable in colour, shape, texture, and translucency	
Indications	Discoloration, diastemas, worn/chipped teeth, minor misalignments, aesthetics	
Bonding Protocol	Etching with hydrofluoric acid → silane → light- cured resin cement	
Advantages	Superior aesthetics, conservative approach, biocompatible	
Limitations	Brittle before bonding, technique-sensitive, not ideal for heavy function	
Best Suited For	Aesthetically demanding cases with good enamel support	

LITHIUM DISILICATE:

Parameter	Details
Composition	Lithium disilicate glass-ceramic (e.g., IPS e.max) with interlocking crystals
Material Type	Pressed or CAD/CAM-milled all-ceramic
aesthetics	Excellent; highly translucent and available in multiple opacities
Strength	High flexural strength (~360–500 MPa)
Thickness	Typically 0.5–1.0 mm
Tooth Preparation	Conservative; enamel preservation possible
Fabrication Method	Heat-pressed or CAD-milled from ceramic blocks
Customization	Various translucency/opacity levels, shades, and characterizations available
Indications	Discoloration, minor misalignment, chipping, wear, aesthetic rehabilitation
Bonding Protocol	HF etching → Silane → Light/dual-cured resin cement
Advantages	Strong and aesthetic, suitable for anterior/posterior use, masks discoloration
Limitations	Technique-sensitive, costly, over-preparation reduces aesthetic outcome
Best Suited For	Patients needing aesthetics with durability (e.g., smile makeover cases)

iii. **ZIRCONIA VENEERS:**

Parameter	Details
Composition	Yttria-stabilized tetragonal zirconia polycrystals (Y-TZP)
Material Type	Polycrystalline ceramic (no glass content)
AEsthetics	Moderate; improved in high- translucency zirconia
Strength	Very high (~800–1200 MPa flexural strength)
Thickness	Typically 0.5–1.0 mm

© 2025 IJRAR October 2025, Volume 12, Issue 4	www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

	, ,	, 01
To	ooth Preparation	Slightly more aggressive than glass ceramics
Fa	brication Method	CAD/CAM milled and sintered
Cı	ıstomization	Available in various translucency levels and shades
Inc	dications	Bruxism cases, severe discoloration, posterior veneers, durability needs
Во	onding Protocol	Air abrasion → MDP primer → Resin or self-adhesive cement (no HF etch)
Ac	dvantages	Extremely strong, fracture-resistant, biocompatible, newer aesthetic options
Li	mitations	Less translucent, higher prep needed, technique-sensitive bonding
Ве	est Suited For	High-load zones, bruxers, cases needing strength and moderate aesthetics

COMPOSITE VENEERS: iv.

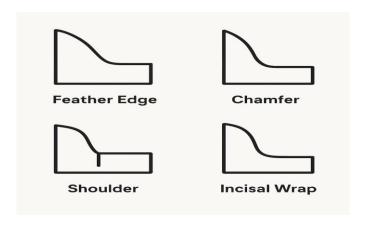
Parameter	Details
Composition	Resin matrix (e.g., Bis-GMA) with inorganic fillers (glass/silica particles)
Material Type	Resin-based composite
aesthetics	Good initially; may stain or dull over time
Strength	Moderate; less than ceramic veneers
Thickness	Typically 0.3–1.0 mm
Tooth Preparation	Minimal; often no-prep or additive technique
Types	Direct (chairside) and Indirect (lab-fabricated)
Fabrication Method	Hand-sculpted (direct) or lab-made and bonded (indirect)
Customization	Shade, translucency, and shape can be modified chairside
Indications	Minor discoloration, chipped teeth, small diastemas, shape correction
Bonding Protocol	Phosphoric acid etching → bonding agent → incremental layering or cementation
Advantages	Affordable, conservative, repairable, single-visit option
Limitations	Less durable, prone to staining, polish and longevity inferior to ceramics
Best Suited For	Budget-conscious, young patients, temporary or minimally invasive aesthetics

CLINICAL STEPS OF BONDING PROTOCOLS IN LAMINATE VENEERS:

- Trial fit and evaluation.
- Isolation of the field.
- Tooth surface cleaning and preparation.
- Etching of enamel and/or dentin.
- Adhesive application (tooth side).
- Veneer internal surface treatment (etching, silanization).
- Application of adhesive to veneer (uncured).
- Resin cement application and veneer placement.
- Excess cement removal and tack curing.
- Final light curing from multiple directions.
- Finishing and polishing of margins.

II. **TOOTH PREPARATION:**

Minimal and no-prep veneers are conservative cosmetic solutions that enhance smile aesthetics with little or no removal of natural tooth structure. They are best suited for cases involving minor imperfections such as small gaps, mild discoloration, or slight changes in tooth shape. Feldspathic porcelain is commonly used for no-prep veneers due to its ultra-thin design and superior translucency, while lithium disilicate (e.g., IPS e.max) is preferred for minimal-prep veneers when additional strength is needed. The bonding process begins with cleaning and etching the enamel surface, followed by the application of an adhesive. Veneer preparation depends on the material: feldspathic and other glass ceramics are etched with hydrofluoric acid and treated with silane, whereas zirconia requires sandblasting and an MDP-containing primer. The veneers are then bonded using resin cement, light-cured, and polished. These veneers bond strongly to enamel and offer excellent aesthetics with minimal invasiveness. However, they are best reserved for cases with mild aesthetic concerns and require careful case selection for optimal results.(2)



1. PROTOCOLS FOR ENAMEL PRESERVATION:

Preserving enamel during veneer bonding is crucial for achieving strong adhesion, long-term durability, and minimal biological impact. Ideal cases are those with mild misalignment or discoloration, where minimal or no tooth preparation is needed. Conservative preparation techniques should aim to stay entirely within enamel, using depth-cutting burs (typically 0.3-0.5 mm) to control reduction. Margins should be kept supragingival to protect the periodontium, and incisal edges should be preserved unless functional or esthetic needs require reduction. Finally, proper patient education on care and regular dental follow-up are essential to maintain veneer integrity and overall oral health.(2)

MARGINAL CONFIGURATION PLANNING:

Marginal design in veneers plays a crucial role in both esthetic outcomes and long-term success. The feathered edge is the least invasive design, preserving the most enamel, but it poses challenges in masking discoloration and may lead to marginal staining. The chamfer margin is the most commonly used, offering a clear finish line for the laboratory while maintaining a good balance between conservation and aesthetics. The shoulder margin, although rarely used in veneers, is reserved for cases with severe discoloration or damage, as it requires significant tooth reduction. A window preparation, which avoids the incisal edge, is ideal for minor corrections and preserves more tooth structure, but it may compromise strength and esthetic blending. In contrast, incisal overlap or wrap designs enhance mechanical retention and improve esthetics, although they necessitate slightly more reduction. A deep chamfer or butt joint at the incisal edge is recommended in areas of functional load, as it offers better resistance to chipping and ensures a smooth transition. Ultimately, the choice of marginal design should prioritize enamel preservation, proper seating, and an invisible margin to optimize both function and appearance.(3)

III. SURFACE TREATMENT OF THE TOOTH:

1.ETCHING PROTOCOLS :ENAMEL VS DENTIN:

Aspect	Enamel Etching	Dentin Etching
Purpose	Create micro- retentive surface	Remove smear layer and expose collagen network
Etchant Used	35–37% Phosphoric acid	35–37% Phosphoric acid
Etching Time	15–30 seconds	10–15 seconds
Surface Characteristics	Highly mineralized, crystalline	Moist, organic-rich with tubules
Post-Etch Appearance	Chalky white appearance	No chalky appearance (risk of over-etching)
Moisture Requirement	Air-dried after etch	Should remain moist (to prevent collagen collapse)
Bond Strength	High (ideal substrate for bonding)	Lower than enamel (technique-sensitive)

© 2025 IJRAR October 2025, Volume 12, Issue 4	www.ijrar.org (E-ISS	SN 2348-1269, P- ISSN 2349-51	38)
Preferred Technique	Total-etch	Preferably selective etch or self-etch systems	
in Veneers	Aim for enamel bonding whenever possible	Minimize dentin exposure; handle with care	

2.IMPLEMENTATION OF BONDING ADHESIVE:

Parameter	Total-Etch Adhesive	Self-Etch Adhesive
Etching Agent	35–37% Phosphoric acid (separate step)	No separate etching step; acid is incorporated in primer
Steps	Etch \rightarrow Rinse \rightarrow Dry \rightarrow Adhesive application	Apply self-etch primer/adhesive directly
Application Complexity	Technique-sensitive, more steps	Fewer steps, less technique-sensitive
Effect on Enamel	Excellent etching of enamel (distinct micromechanical retention)	Mild etching of enamel, may require selective phosphoric etch
Effect on Dentin	Risk of over-etching and collagen collapse if over-dried	Gentle to dentin; maintains collagen structure
Moisture Sensitivity	High – requires proper moisture control ("wet bonding")	Low – less dependent on moisture level
Post-op Sensitivity	Higher risk due to exposed dentinal tubules	Lower sensitivity due to sealed tubules
Bond Strength to Enamel	Superior	Lower unless selective enamel etch is done
Bond Strength to Dentin	Variable; high if technique is ideal	Consistent; good if used correctly
Common Usage in Veneers	Preferred when enamel is dominant	Used when more dentin is exposed or as a universal adhesive

3. MOISTRURE CONTROL AND ISOLATION:

Proper **moisture control and isolation** are critical for the success of veneer bonding, as contamination by saliva, blood, or moisture can compromise the adhesive interface and lead to bond failure.

Rubber dam isolation is the gold standard, offering a clean, dry, and visible working field.(4) It ensures complete control during etching, adhesive application, and cementation. However, in anterior aesthetic zones, some clinicians prefer alternative methods like cotton rolls, cheek retractors, and high-volume suction for better access and patient comfort. During bonding, enamel can tolerate some drying, but dentin must remain slightly moist after etching to preserve the collagen network and allow proper adhesive penetration. Over-drying dentin can cause collagen collapse, leading to poor bond strength and sensitivity.(5)



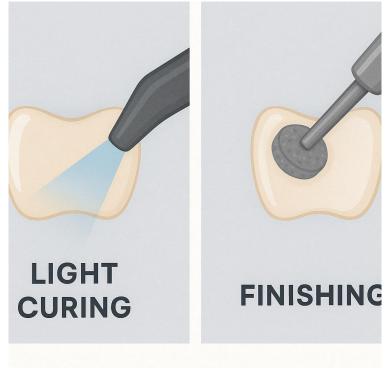
IV. **SURFACE TREATMENT OF THE VENEER:**

Surface treatment of the internal surface of a veneer is vital for achieving a strong and lasting bond to the tooth. The procedure generally includes:

- 1. Cleaning: After try-in, any saliva or try-in paste is removed using either phosphoric acid or an ultrasonic bath with alcohol to ensure a clean surface.
- 2. Etching: For ceramic veneers like lithium disilicate, the internal surface is etched with 5-9% hydrofluoric acid for about 20 seconds (as per manufacturer's guidelines) to create micromechanical retention. For composite veneers, air abrasion may be used instead.
- 3. Rinsing and Drying: The etched surface is thoroughly rinsed and dried to eliminate acid residue and moisture.

- 4. Silane Application: A silane coupling agent is applied to the etched surface for around 60 seconds. It enhances chemical bonding between the ceramic and resin cement.
- 5. Adhesive (if recommended): Some protocols advise applying a layer of adhesive (without curing) before cementation to improve the bond strength.(6)

V. **RESIN CEMENTATION PROTOCOL:**


The resin cementation protocol for veneers begins with a try-in using a shade-matching paste to evaluate fit and aesthetics, followed by thorough cleaning of both the veneer and the tooth. The tooth surface is then prepared by etching the enamel with 35-37% phosphoric acid for 15-30 seconds, rinsing, and gently drying. An adhesive is applied but not cured. Simultaneously, the veneer's intaglio surface is treated—cleaned, etched with hydrofluoric acid (for ceramic veneers), rinsed, and dried. A silane coupling agent is then applied for about 60 seconds and air-dried. Optionally, a thin layer of adhesive may be applied without curing. Light-cure resin cement is placed inside the veneer, which is then seated onto the tooth with steady pressure. After tack-curing for 1–2 seconds to gel the excess cement, the excess is removed using a brush or explorer. Final polymerization is done by light-curing from all surfaces—facial, incisal, and palatal—for at least 40 seconds each. The procedure concludes with checking occlusion, contacts, and margins, followed by polishing and finishing for an optimal aesthetic outcome.(3)

VI. LIGHT CURING AND FINISHING:

Light curing is a crucial step in veneer cementation, ensuring complete polymerization of the resin cement for optimal bond strength and durability. After seating the veneer and removing excess cement through a brief tack cure (1–2 seconds), the final curing is done using a high-intensity curing light. The veneer should be cured from multiple directions—facial, incisal, and palatal—for at least 40 seconds per surface to ensure thorough polymerization, especially through translucent ceramics. After curing, finishing involves removing any remaining cement flash, refining the margins with fine diamond burs or polishing discs, and checking for proper proximal contacts and occlusion. Final polishing is done using rubber polishers or felt wheels with polishing paste to achieve a smooth, glossy,

and natural-looking surface. This step not only enhances aesthetics but also helps prevent plaque accumulation and marginal staining, contributing to the longevity and success of the veneer.(7)

VII. COMMON PITFALLS AND TROUBLESHOOTING IN VENEERS:

Veneer procedures can fail if key steps are not followed precisely. Poor isolation may lead to contamination, reducing bond strength and causing marginal staining. Over-preparing teeth can expose dentin, increasing sensitivity and weakening the bond. Shade mismatches often result from skipping proper try-in or using the wrong cement shade.(8) Veneer debonding or fractures may occur due to inadequate surface treatment or insufficient light curing. Delayed or improper removal of excess cement can lead to overhangs or open margins. To avoid these issues, it's essential to follow correct protocols for preparation, bonding, curing, and finishing.(9)

VIII. **RECENT ADVANCES AND TRENDS IN BONDING PROTOCOLS:**

1. <u>Universal Adhesives (Multi-Mode Adhesives):</u>

These all-in-one systems can be used in total-etch, self-etch, or selective-etch modes. They simplify clinical steps while maintaining high bond strength, especially to dentin. Their versatility has made them widely adopted in modern veneer bonding.

2. Selective Enamel Etching:

Instead of etching both enamel and dentin, current protocols recommend etching only the enamel with phosphoric acid before applying a self-etch adhesive. This approach reduces sensitivity while enhancing enamel bond strength—combining the strengths of both systems.

3. Bioactive Adhesives and Cements:

New materials now incorporate bioactive components that release calcium, phosphate, or fluoride. These help remineralize the tooth structure and resist secondary caries, promoting long-term success.

4. <u>Improved Silane and Ceramic Primers:</u>

Next-generation pre-hydrolysed silanes and dual-priming agents provide better bonding to ceramic surfaces. These materials improve the chemical interface between ceramic restorations (like lithium disilicate veneers) and resin cements.

5. Nanotechnology-Enhanced Adhesives:

Incorporating nanoparticles in adhesives improves penetration into the etched surface, enhances mechanical strength, and provides better sealing—especially in hybrid layers of dentin.

6. Self-Adhesive Resin Cements (SARCs):

While traditionally not favored for veneers, improved SARCs with enhanced esthetics and bonding capability are now being explored for less complex veneer cases, reducing steps and chair time.

7. Digital Integration & AI-Assisted Protocols:

Digital smile design and CAD/CAM workflows allow for tailored bonding plans, and some AI tools assist in predicting the best bonding strategy based on material, tooth condition, and patient factors.(10)

CONCLUSION:

Successful bonding of laminate veneers depends on a meticulous, step-by-step protocol that ensures optimal adhesion, aesthetics, and long-term durability. From proper tooth and veneer surface preparation to the selection of the appropriate adhesive system and resin cement, each phase must be executed with precision. Advances in adhesive technology—such as universal adhesives, selective etching, and improved silane agents—have streamlined procedures while enhancing outcomes. A sound understanding of these protocols, along with careful case selection and moisture control, remains essential for predictable, long-lasting veneer restorations.

REFERENCES:

- 1. All About Laminate Veneers: Your Top Questions Answered [Internet]. [cited 2025 Jun 16]. Available from: https://dictionary.dental/terms/laminate-veneer
- [No title found]. Int J Periodontics Restorative Dent.
- 3. Alothman Y, Bamasoud MS. The Success of Dental Veneers According To Preparation Design and Material Type. Open Access Maced J Med Sci. 2018 Dec 14;6(12):2402–8.
- 4. Matsumura H, Aida Y, Ishikawa Y, Tanoue N. Porcelain laminate veneer restorations bonded with a threeliquid silane bonding agent and a dual-activated luting composite. J Oral Sci. 2006;48(4):261–6.
- 5. Vinod Kumar G, Soorya Poduval T, Bipin Reddy, Shesha Reddy P. A Study on Provisional Cements, Cementation Techniques, and Their Effects on Bonding of Porcelain Laminate Veneers. J Indian Prosthodont Soc. 2014 Mar 1;14(1):42–9.
- 6. THE SCIENCE OF BONDING: FROM FIRST TO SIXTH GENERATION The Journal of the American Dental Association [Internet]. [cited 2025 Jun 16]. Available from: https://jada.ada.org/article/S0002-8177(14)65275-2/fulltext
- 7. Rojas-Rueda S, Villalobos-Tinoco J, Conner C, Colvert S, Nurrohman H, Jurado CA. Bonding Protocols for Lithium Disilicate Veneers: A Narrative Review and Case Study. Biomimetics. 2025 Mar;10(3):188.
- 8. Rojas-Rueda S, Villalobos-Tinoco J, Conner C, Colvert S, Nurrohman H, Jurado CA. Bonding Protocols for Lithium Disilicate Veneers: A Narrative Review and Case Study. Biomimetics. 2025 Mar 19;10(3):188.
- 9. ChatGPT [Internet]. [cited 2025 Jun 16]. Available from: https://chatgpt.com
- 10. Rouse JS. Full veneer versus traditional veneer preparation: A discussion of interproximal extension. J Prosthet Dent. 1997 Dec 1;78(6):545-9.