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Abstract 

Order statistics are mostly used in nonparametric methods but it is possible to use order statistics in 

a parametric setting and for estimating a parameter. The population maximum is a natural parameter of a 

discrete uniform distribution. This paper proposes to use sample order statistics for estimating the 

population size through population maximum. It is already known that sample maximum can be used to 

estimate the population maximum. This paper extends the approach and attempts to construct an estimator 

of the population maximum using all the sample order statistics.  
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Introduction 

 The population sampling units can be arranged in an ascending order of magnitude to obtain 

population order. Similarly, when sample values are arranged in an ascending order of magnitude, sample 

order statistics are obtained. It may be interesting to note that when the population maximum is the 

parameter of interest, then, conditional on the sample maximum, the distribution of other sample order 

statistics is free from the parameter, namely the population maximum. In other words, conditional on the 

sample maximum, the other sample order statistics are ancillary. Still it is possible to use these ancillary 

statistics in constructing an estimator for the population maximum.     

The population maximum is a natural parameter of a uniform distribution.  As such the sample 

maximum is sufficient statistic for the population maximum in the uniform distribution. In this case, all 

other order statistics are ancillary conditional on the sample maximum. However, the marginal distribution 

of every order statistic involves the population maximum as a natural parameter. This paper discusses the 

possibility of using all the sample order statistics for estimating the population maximum. One special case 

of this approach has already been discussed in Chapter 3 in the form of the German Tank problem the 

solution to the German Tank problem takes the sample maximum and makes necessary either to remove or 

to reduce the bias and obtains an unbiased or almost unbiased estimator of population maximum (Limbore, 

2017).  

 Suppose a sample of size n is denoted by  nXXXS ,...,, 21 . If the sample values are arranged in an 

ascending order of magnitude, then the result is an ordered sample  

 ,,...,, )()2()1(0 nXXXS   

where 
)()2()1( ... nXXX  . If the population has finite bounds, let L denote the lower population bound 

and let U denote the upper population bound. Then it can be easily shown that the sample order statistics 

satisfy the following condition.  
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 .... )()2()1( UXXXL n   

 It is also trivial to claim that UXandLX n  )()1(
as the sample size n increases indefinitely. In 

other words, X(1) and X(n) are asymptotically unbiased for L and U respectively. 

 When the population distribution has no finite bounds, researchers have modified the problem to 

that of estimating an upper percentile, still using similar methods. This chapter does not distinguish 

between these two problems and attempts to address them simultaneously. There is enough literature on the 

properties of order statistics for use in problems like estimating an upper percentile or even a higher 

quintile. When the population has finite bounds, it can always be transformed to a distribution on the unit 

interval through an appropriate change of origin and of scale. When the population has only a finite lower 

bound, it can be transformed so that the population is distributed on the positive half of the real line.  

The Uniform Distribution  

 Consider the case of the uniform distribution, not necessarily confined to the unit interval. The 

uniform distribution may be discrete or continuous. The method is not affected by the range of the uniform 

distribution except for the requirement that the lower limit of the support of the distribution should be at 

zero. Let us first begin with a discrete uniform distribution on integers 1, 2, ..., N, so that the random 

variable X can take any of the N possible values with probability 1/N. Suppose nXXX ,...,, 21 is a random 

sample from this distribution. That is, nXXX ,...,, 21 are independent and identically distributed uniformly 

over the positive integers 1, 2, ..., N. The probability mass function of each of them is given by 

 
1

1,2,..., 1,2,...,   rP X i for r n and i N
N

                  (1) 

The distribution function of each of the n sample values is given by 

    1,2,..., 1,2,...,    r r

i
F i P X i for i N and r n

N
                 (2) 

Let 
)()2()1( ,...,, nXXX be the order statistics of this sample so that

)()2()1( ... nXXX   

The probability mass function of the i-th order statistics is then given by  

   

1

( )

! 1
1 , 1,2,..., ; 1,2,...,

1 ! !

r n r

r

n i i
P X i i N r n

i n i N N N

 
   

               
         (3) 

The distribution function of the r-th order statistics is then given by  

  ( ) 1 1,2,..., ; 1,2,...,





    
           

    


j n jn

r r

j i

n i i
F i P X i i N r n

j N N
               (4) 

Consequently, the expected value of the r-th order statistic X(r) is given by  

( ) , 1,2,...,
1

     
r

r
E X N r n

n
             (5) 

Further the variance of the r-th order statistic X(r) is given by  

 

   
2

( ) 2

1

1 2

 
   

 
r

r n r
Var X N

n n
             (6) 

For r s, 1  r, s  n, the covariance between X(r) and X(s) is given by 
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( ) ( )cov ,  r sX X  
 

   
2

2

1

1 2

 


 

r n s
N

n n
                       (7) 

It is easy to obtain the following from Equation (5) for every r = 1, 2, ..., N. 

  ( )
1 . , 1,2,...,

 
   

 

rX
E n N r n

r
             (8) 

Combining the above result for r = 1, 2, ..., n, we obtain  

                              
   ( ) ( )

1 1

1 1
,

 

  
  

 
 

n n
r r

r r

X Xn n
E N

n r n r
                        (9) 

giving an unbiased estimator of the population maximum N. 

Further, the variance of this unbiased estimator of N is given by  

                        
 

( )

1

2

( )

2
1

1

1





 
 
 

  
  

 





n
r

r

n
r

r

Xn
Var

n r

Xn
Var

n r

 

   
2 2

( ) ( ) ( )

2 2 2
1

cov , ,1 1

. 

         
n n

r r s

r r s

Var X X Xn n

n r n r s
         (10) 

First Consider 

                             
   

   

( )
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1

2

22
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2
1

( 1)

1 2

1 1

1 2







  

 
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 

 


 







n
r

r

n
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n

r

Var X

r

r n r
N

r n n

n r
N

rn n

 

   
 

2

2

1 1
1 1 ...

21 2

  
       

    

N
n n

nn n
           (11) 

Next Consider 

                           
 

   

( ) ( )

1 1

2

2
1 1

cov ,

.

1

. 1 2

 


 


  

 


 

 
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n n
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n n

r s
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X X
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   

2

2
1

( 1) 1

1 2 

  


 


n

s

n N n s

sn n
 

   
 

2

2

( 1) 1 1 1
1 1 ...

2 31 2

   
        

    

n N
n n

nn n
          (12) 

 

Putting the terms together, we obtain 

 

 

Table 1: Exact expressions for the expected value of sample maximum of order statistics from 

discrete uniform distribution 

n n:n 

1 (1/2)(N+1) 

2 (1/6)N-1 (4N2+3N-1) 

3 (1/4)N-1 (3N2+2N+1) 

4 (1/30)N-3 (24N4+15N3-10N2+1) 

5 (1/12)N-3 (10N4+6N3-5N2+1) 

6 (1/42)N-5 (36N6 +21N5 - 21N4+7N2-1) 

7 (1/ 24)N-5 (21N6 + 12N5- 14N4 +7N2-2)  

8 (1/ 90)N-7 (80N8+ 45N7- 60N6+ 42N4- 20N2- 3)  

9 (1/ 20)N-7 (18N8+ 10N7- 15N6+ 14N4- 10N2+ 3) 

10 (1/ 66)N-9 (6N10+ 33N9- 55N8+ 66N6- 66N4+ 33N2- 5) 

11 (1/ 24)N-9 (22N10+ 12N9- 22N8+ 66N6- 44N4+ 33N2- 10) 

12 (1/ 2730)N-11 (2520N12+ 1365N11- 2730N10+ 5005N8- 858N6+9009N4- 4550N2+691) 

13 (1/ 420)N-11 (390N12+ 210N11- 455N10+ 1001N8- 2145N6+ 3003N4- 2275N2+ 691) 

14 (1/ 90)N-13 (84N14+45N13- 105N12+ 273N10- 715N8+ 1287N6- 1365N4+ 691N2- 105) 

15 (1/ 48)N-13 (45N14+ 24N13- 60N12+ 182N10- 572N8+ 1287N6- 1820N4+ 1382N2- 420) 

 

 

 

 

 

 

 

 

 
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   
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1
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1
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2 3 ( 1) ( 2) 2 31 2

1 1 1 1 1 1
1 1 ... ( 1) 1 1 ...

( 2) 2 3 2 3



 
 
 

         
                               

    
                     


n

r

r

Xn
Var

n r

N n N n
n n n n

n n n n nn n

N
n n n n

n n n n

 

 

2
2

2

2

1 1 1
1 1 ...

( 2) 2 3

1 1 1
1 1 ...

( 2) 2 3

  
  

  

  
        

   

  
        
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Table 2: Exact expressions for the variance of sample maximum of order statistics from discrete 

uniform distribution 

n σ = σ2
n:n 

1 (1/12)(N2-1) 

2 (1/36)N-2 (2N2+1) (N2-1) 

3 (1/240)N-2 (9N2-1) (N2-1) 

4 (1/900)N-6 (24N6 -21N4-19N2+1) (N2-1) 

5 (1/1008)N-6 (20N6 -36N4-15N2+7) (N2-1) 

6 (1/1764)N-10 (27N10 -78N8 +6N6+78N4-13N2+1) (N2-1) 

7 (1/2880)N-10 (35N10 -145N8 +93N6+213N4-120N2+20) (N2-1) 

8 (1/8110)N-14 (80N14 -445N12 +575N10+715N8-1449N6+ 541N4 -111N2+9) (N2-

1) 

9 (1/13200)N-14 (108N14 -772N12 +1571N10+911N8-5821N6+ 4389N4 -

1683N2+297) (N2-1) 

10 (1/ 4356)N-18 (30N18-267N16 +767N14 -25N12-3622N10 +5690N8  -3572N6  +1444N4  -

305N2 + 25)(N2  -1) 

11 (1/ 262080)N -18(1540N18 -16660N16 +63420N14 -42400N12 -349707N10 +958873N8-

980525N6 ) +641095N 4  -254800N 2  +45500)(N2  -1) 

12 (1/ 7452900)N-22 (37800N22 - 487725N20 +2359665N18 -3195885N16 -13921600N14 

+63345590N12 -104252950N10 +99659850N8  -66497141N6 +27342319N4 -5810619N2  

+477481)(N 2-1) 

13 (1/176400)N-22(780N22 -11820N20 +70535N18-148255N16 -399506N14 +3051214N12-

7462327N10 +10192303N8  -9968838N6  +6659202N4  -22666569N2  +477481)(N2 -1) 

14 (1/16200)N -26(63N 26 -110N 24 +7965N22-23235N 20 -36300N18 +515160N16 -

1785320N14+3428080N12 -4587230N10 +4530710N8  -3053308N6  +1260092N 4  -

268170N 2  +22050) (N 2  -1) 

15 (1/195840)N-26 (675N26 -13605N24 +115935N 22 - 440985N20 - 266395N18 +10536085N16 

+130345829N12 - 231687560N10 + 313890720N8 - 310871860N6  +208610740N4  - 

83680800N 2  +14994000)(N2-1) 

 It is interesting to note in this regard that the population maximum can also be estimated with help 

of the sample maximum alone. Further, after correcting for the bias, the sample maximum provides the 

minimum variance unbiased estimator of the population maximum because the sample maximum is 

complete and sufficient for the population maximum. More specifically,  

( )

( 1)
n

n
E X N

n

 
 

 
           (13) 

and 

2

( )

( 1)
var

( 2)

 
   

n

n N
X

n n n
                       (14) 

 It should be noted that the variance of the previous estimator based on all sample order statistics has 

a large variance partly due to the fact that sample order statistics are positively correlated and therefore 

inflate the variance of a linear combination. It would be better if order statistics could be made 

stochastically independent, because that would eliminate the covariance terms from the variance of their 

linear combination.  

Conclusion: 

 The main conclusion of this paper is that the population maximum can be estimated using the 

sample order statistics. When the population maximum is unknown and is treated like a parameter, the 

sample maximum is a complete sufficient statistic and therefore the estimator of the population maximum 
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based on the sample maximum is the most efficient estimator of the population maximum. All other sample 

order statistics are ancillary and hence their conditional distribution on the sample maximum does not 

depend on the population maximum. Nevertheless, the marginal distribution of every order statistics 

depends on the population maximum as the parameter. Sample order statistics for a random sample drawn 

from any distribution can be transformed to order statistics for a sample drawn from the uniform 

distribution on the unit interval [0, 1]. 
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