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Abstract:  Three-phase induction motors are widely used in domestic, commercial and industrial applications. On an average, the 

energy consumed by an induction motor during its life cycle is 60–100 times the initial cost of the motor. Even a small percentage 

of efficiency increase will result in a significant energy conservation and economic impact. A comparative study of heuristic 

optimization techniques (HOTs) has been carried out for energy efficient induction motor design (EEIMD) problem considering 

the active power loss effect to ensure the minimum manufacturing and annual power loss costs. The objective of this paper is to 

minimize the total manufacturing and annual power loss costs. In this paper, various HOTs such as genetic algorithm (GA), 

particle swarm optimization (PSO), and exchange market algorithm (EMA) have been applied to obtain EEIMD solutions. The 

proposed algorithms have been applied on designing the two sample motors. In comparison with the solution quality and 

execution time obtained by the HOTs, the EMA seems to be a promising technique to solve EEIMD problems. 

 

Index Terms - Energy efficient motor, evolutionary algorithm, genetic algorithm, heuristic optimization techniques. 

NOMENCLATURE 

Misc, Mist core and tooth iron masses in stator (Kg) 

Mirc, Mirtb, Mirtt core, tooth bodies and tooth tips iron masses in rotor (Kg) 

Mb, Mer, Msc         bars, end rings and stator conductor copper masses (Kg) 

pisc, pist specific iron loss of stator core and tooth (W/Kg) 

Pisc, Pist  core and teeth iron power loss in stator (W) 

Pb, Per, Psc bars, end rings and stator conductors copper power losses (W) 

Pf, Ps  friction and stray power losses (W) 

Ksr, Kss  rotor and stator slot copper insulating factors 

δr  rotor current densities (A/mm2) 

p  number of poles 

T  motor running time per year (hr) 

α  annual rate of interest and depreciation 

η  full-load efficiency 

W  rated power (W) 

Ker end ring non-uniformity current distribution factor 

Wc, Wi  copper and iron specific masses (Kg/m3) 

ρs, ρr  stator and rotor copper resistivities (Ω.m) 

Ki  iron insulation factor 

Kj  end ring to bar current density ratio  

f  supply frequency (Hz) 

Nr, Ns  rotor and stator number of slots 

cc, ci  specific copper and iron material costs (Rs/Kg) 

ce  specific energy loss cost (Rs/Wh) 

cp  specific power loss cost (Rs/W) 

drc  rotor core depth (m) 

drs  rotor slot opening depth (m) 

wrs  rotor slot opening width (m) 

Di  rotor inner diameter (m) 

Do  stator outer diameter (m) 

Dr  rotor diameter (m) 

L  gross iron length (m) 

Li  active iron length (m) 

m number of particles in the swarm 

N number of dimensions in a particle 

K  pointer of iterations (generations) 

Vi, n k  velocity of particle i at iteration k 

W weighting factor 

C 1, C2 acceleration factor 

rand j random number between 0 and 1 
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X i, n k   current position of particle i at iteration k 

pbest i personal best of particle i  

gbest global best of the group 

W max  final weight factor 

W min  initial weight factor 

 Iter  current iteration number  

 Iter max  maximum iteration number 

ni   nth person of the first group  

nj   nth person of the second group  

r   random number within [0, 1] 

  jth member of the second group 

  members of the first group 

  members of the second group 

r1 and r2   random numbers 

 nk   nth member of the third group  

 kth member of the third group and 

Sk  share variation of the kth member of the third group 

 share value added randomly to some shares  

 total shares of member t  

 shares of the tth member  

 information of exchange market 

  risk level for each member of the second group  

 number of the tth member in exchange market 

 number of the last member in exchange market, l is a 

 constant coefficient for each member  

g1  common market risk amount 

,  maximum and minimum values of risk in market respectively 

 share value added randomly to some shares  

 random number between -0.5 and 0.5 

 market variable risk in third group 

I. INTRODUCTION 

Improving the efficiency of three-phase squirrel cage induction motors, which are the most energy consuming electric 

machines in the world, saves much energy. The efficiency can be raised by optimizing the induction motor design. The following 

two different, partially conflicting approaches are considered for the optimal design of three-phase induction motor (IM) as 

follows: 

 From the manufacture’s viewpoint, an optimal design has minimum production cost including the active and construction 

materials and the manufacturing cost [1-5]. 

 From the consumer’s viewpoint, an optimal designed motor has the lowest annual cost, including the initial capital cost, 

interest rate, energy losses cost, yearly operation time, etc [4-6].  

The optimal design of a three-phase cage IM for minimum annual cost, using evolutionary optimization techniques, is an 

appropriate approach to the motor design. With this approach, any desired requirements may be easily expressed in the 

optimization problem formulation. The optimal design parameters of the motor can be obtained by solving a constrained 

nonlinear optimization problem. The problem consists of an objective function which is optimized (minimized or maximized) 

with a set of constraints.  

Stochastic searching algorithms such as GA [7], evolutionary algorithm [8], neural networks [9], fuzzy logic [10], PSO [11, 12], 

Adaptive PSO [13], bacterial foraging algorithm (BFA) and Adaptive BFA [14] have been used to solve the IM design problems. 

Though heuristic algorithms such as GA have been employed to solve IM design problems, recent research has indentified some 

deficiencies in GA performance [15]. The premature convergence of GA degrades its performance and reduces its search capability 

that leads to a higher probability toward obtaining local minimum. 

A new evolutionary algorithm called exchange market algorithm (EMA) was proposed by Naser Ghorbani and Ebrahim Babaei 

in 2014 [16]. The EMA is inspired by intelligent dealings of shareholders. The exchange market changes between normal and 

oscillatory market conditions.  These characteristics are introduced in EMA. The two searcher and absorbent operators are used in 

normal and oscillatory market conditions respectively. As each iteration uses double exploitation and exploration property, EMA is 

one of the most efficient heuristic search algorithms. Currently, EMA is applied successfully in various areas of power system 

problems such as economic dispatch and reactive power dispatch [17]. 

)2(group
jpop

)1(group
,i1pop

)1(group
,i2pop

)3(group
kpop

1tn

1tn

ytS



1

popt

popn



max,1g max,2g

3tn

sr

2g

http://www.ijrar.org/


© 2017 IJRAR July 2017, Volume 4, Issue 3                     www.ijrar.org  (E-ISSN 2348-1269, P- ISSN 2349-5138) 

 

IJRAR19D1017 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 149 
 

This paper presents the application of GA, PSO and EMA to solve the EEIMD problems. The effectiveness and robustness of the 

HOTs have been verified by the simulations conducted on two sample induction motors design. The results confirm the 

effectiveness and robustness of the EMA algorithm through a comprehensive statistical analysis. 

The main contributions of this paper can be summarized as follows:  

 The EMA algorithm is proposed as a new optimization tool for the EEIMD problems.  

 Experiments are carried out to compare EMA with the other HOTs.  

This paper is structured as follows. The EEIMD problem is introduced in Section 2. Section 3 presents the overview of HOTs 

in brief. The implementation of the HOTs to EEIMD is described in Section 4. The computational results are analyzed in Section 

5, and the conclusion is provided in Section 6. 

II. PROBLEM FORMULATION 

A. Definition 

If ‘F’ is the objective function, which depends on the design variables vector X= (X1, X2, ........., XN), the corresponding 

constrained IM design optimization problem can be written as: 

 

Min   F(X) 

Subject to G(X) ≤ 0                     (1) 

B. Design variables 

The nine design variables are used in formulating the objective and constraint functions of the IM design problem.  

C. Constraints 

The six important motor performance indices are chosen as design constraints.  

D. Objective function 

In this study, the annual cost of IM is considered as the objective function. The annual cost of the motor is the summation of 

annual cost of the motor manufactured iron and copper materials, the annual cost of a fictitious active power source required to 

cover the total active power loss of the motor and the annual cost of energy needed by that fictitious source. The expression of 

different cost functions, in terms of the design variables are summarized as follows: 

(i)  Annual active material cost 

Annual iron material cost,  
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Annual active material cost is given by 
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(ii)    Annual active power loss cost 

Annual iron loss cost, 
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Annual copper loss cost 
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Annual friction and windage loss cost, 

f
Ppαc

fp
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(7) 

The stray loss is assumed to reduce the efficiency by 0.5%, so that 

sPpαcspC 
                                                                        

(8) 

The total annual active power loss cost is thus 

spC
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(iii)  Annual energy loss cost 

pαc
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                           (10) 

The objective function is given by 

e 
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CmCF(X) 

                                                             

(11) 
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III. OVERVIEW OF HOTS 

A. GA 

Genetic algorithm (GA) is a search algorithm based on the behavior of natural selection and genetics. GA’s operate on a 

population of potential solutions applying the principle of survival of the fittest to produce better solution. At each generation, a 

new set is created by the process of selecting individuals according to their fitness in the problem domain and breeding them by 

crossover and mutation operators. This process leads to the evolution of populations of individuals that are better than the 

individuals [6]. It consists of a population of bit strings transformed by three genetic operators: selection, crossover and mutation. 

Each string (called chromosome) represents a possible solution to the problem being optimized and each bit (or group of bits) 

represents a value for some variable of the problem (gene). These solutions are classified by an evaluation function to better 

solutions. Each solution is evaluated by the fitness function to produce a value. The pair of chromosome and fitness represents an 

individual. The selection operator creates a new population (or generation) by selecting individuals from the previous population. 

Crossover is the main genetic operator and consists of swapping the chromosome between individuals. Crossover is being 

controlled by a crossover probability [7]. This probability should have a larger value. The last operator is mutation and consists of 

changing a random part of the string representing the individual. 

 

B. PSO 

Particle swarm optimization (PSO), first introduced by Kennedy and Eberhart, is one of the heuristic optimization algorithms. 

A simple PSO maintains a swarm of particles that represent the potential solutions to the problem on hand. The simple PSO 

consists of a swarm of particles moving in the D-dimensional space of possible problem solutions. Each particle embeds the 

relevant information regarding the D decision variables and is associated with a fitness that provides an indication of its 

performance in the objective space. Each particle i has a position X i = [X i, 1, X i, 2 ….X i, D] and a flight velocity V i = [V i, 1,     V 

i, 2……V i, D] . Moreover, a swarm contains each particle i  own best position pbest i = (pbest i, 1, pbest i,2, ……., pbest i, D) found so 

far and a global best particle position gbest = (gbest i, gbest i, ……., gbest D) found among all the particles in the swarm so far. 

 In essence, the trajectory of each particle is updated according to its own flying experience as well as to that of the best 

particle in the swarm. The standard PSO algorithm can be described as 

 V i, d 
k+1 = W    V i, d 

k  +  C1  rand1   (pbest i, dk
  –  X i, dk) + C2rand2 (gbest dk – X i, d 

k)                             

X i, d
k+1  =  X i,dk + Vi, d

k+1                                                   

i= 1, 2………, n; d= 1, 2………., D 

 

The time varying weighting function is given by 

W= W max - (W max – W min) × Iter / Iter max                                   

C. EMA 

EMA is a new population-based meta-heuristic algorithm proposed by Ghorbani and Babaei [16]. The algorithm imitates the 

human behavior of stock market in which shareholders trade shares under balanced and oscillated market situations. This 

algorithm uses two searcher and absorbent operators in normal and oscillation modes respectively. In EMA, optimum solution is 

regarded as one that is searched out by a shareholder population. Each individual of this population is called a shareholder. The 

individuals of searcher group and absorbent group are responsible for improving the exploration and exploitation abilities of the 

algorithm. 

1) Exchange Market in Normal Mode 

In normal condition of the exchange market, the shareholders try to maximize their profit using elite shareholders experience. 

In the population, each shareholder is ranked according to the fitness function.  

i) Shareholders with High Ranks 

 These shareholders do not change their shares without performing any risk and trade to maintain their ranks. This group of 

shareholders composes 10 – 30% of the population.  

ii) Shareholders with Average Ranks 

 This group of shareholders composes 20–50% of the population. The members of this group use the experiences of elite 

stockbrokers and take the least possible risk in changing their shares. 

         

   and  

iii) Shareholders with Weak Ranks 

This group of shareholders composes 20–50% of the population. The members of this group utilize the differences of share 

values of elite and medium shareholders with their share values. The population of this group is given in the following equation. 
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2) Exchange Market in Oscillation Mode 

In this mode, the shareholders perform intelligent risks according to their own rank among other members to gain the 

maximum possible profit. The shareholders can be divided into three different groups based on their performances.  

i) Shareholders with High Ranks 

This group allocates 10-30% of the market population known as elite members, which do not participate in the market 

exchange. 

ii) Shareholders with Medium Ranks 

The market share of the second group is changed in such a way that the whole share values of the group is constant. The share 

values of the individuals can be updated as 
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In order to maintain the shares remain constant, each   shareholder randomly sells some of the shares equal to the shares 

purchased. Hence, each shareholder reduces the share value which is given as follows. 

 

where 2tn
is the total share value of tth member after employing share variations. 

 

IV. IMPLEMENT OF HOTS TO EEIMD PROBLEM  

The different steps of HOTs for solving EEIMD problem are described in the Fig. 1. 

V. SIMULATIONS AND COMPARISONS 

To evaluate the performance of the proposed EMA in solving the EEIMD problem, computational simulations are conducted 

on designing two sample motors. Moreover, to further verify the effectiveness of the proposed algorithm, the other HOTs (GA 

and PSO) are employed for comparisons. For rational comparison, same values are chosen for similar parameters as used in the 

compared HOTs. Specifically, for the two sample motors, the population size is set to 20 and the maximum number of iterations 

is set to 100. The HOTs are implemented using MATLAB 7.1 on a core i3 processor with 2.40 GHz and 4 GB RAM, and is 

replicated for 20 independent runs. The specifications of the sample motors are given in Appendix. The annual active material 

cost,   and annual active material, annual power loss and annual energy loss costs are considered in Case 1 and 2 respectively. 
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Fig. 1. Flowchart of HOTs based EEIMD problem 

 

Table 1. Comparison of results of HOTS for 5 HP motor 

Variables/ indices/cost 
Conventional    

method 

Case 1 Case 2 

GA PSO EMA GA PSO EMA 

Independent variables        

Stator bore diameter (mm) 150 145 145.7 147.5 138 137 136 

Average air gap flux density  (Wb/m2) 0.46 0.476 0.456 0.474 0.427 0.435 0.454 

Stator current density (A/mm2) 4 4.2 4.02 4.5 3.54 3.65 3.8 

Air gap length (mm) 0.43 0.41 0.39 0.45 0.35 0.33 0.32 

Stator slot depth (mm) 24.15 22.8 22.74 22.55 28 27.8 25.46 

Stator slot width (mm) 6.92 7.2 7.15 7.3 7.6 7.8 7.92 

Stator core depth (mm) 24.94 26.6 26.4 26.35 29.5 29.7 31.4 

Rotor slot depth (mm) 10 10 12 9 13.6 11 12.7 

Rotor slot width (mm) 5 4.6 5 4.7 6 6 4 

Dependent Variables        

Gross iron length (mm) 89 92.6 95.8 94.6 11.4 112.7 116.72 

Rotor current density (A/mm2) 7.74 7.6 7.4 7.36 6.1 6.4 5.8 

Performance index        

Maximum to full-load torque ratio 2.21 2.57 2.7 2.66 3.3 2.6 2.4 

Starting to full-load torque ratio 1.27 1.6 1.37 1.5 1.23 1.15 1.04 

Starting to full-load current ratio 4.15 4.92 4.68 4.78 4.1 4.2 3.92 

Full-load efficiency 81.57 82.32 83.47 82.7 86.15 85.77 86.23 

Full-load power factor 0.86 0.82 0.84 0.88 0.88 0.89 0.89 

Maximum temperature rise 52 50.68 49.68 51.54 46.6 46.7 46.58 

Annual Cost        

Material cost (Rs) 487.1 460.42 499.43 448.8 564.19 517.02 469. 75 

Power loss cost (Rs) 981.02 912.56 890.01 874.16 847.28 844.56 823.43 

Energy loss cost (Rs) 5115.24 4758.3 4640.8 4590.28 4418 4403.79 4275.36 

Total cost (Rs)  6583.36 6131.28 6030.2 5912.87 5829.5 5765.37 5568.54 
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bounds of design variables of the motor 
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Generate a random population 
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Evaluate the objective function using Eq. (11) 
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Table 2. Performances of HOTs for 5 HP motor in the 20 trials 

Compared item 
Case 1 Case 2 

GA PSO EMA GA PSO EMA 

Maximum cost (Rs) 6423.63 6217.36 6000.56 6116.2 5940.29 5770.64 

Minimum cost (Rs) 6131.28 6030.2 5912.87 5829.5 5765.37 5568.54 

Mean cost (Rs) 6293.2 6134.8 5970.38 5949.8 5803.1 5569.32 

Standard deviation of cost (Rs) 81.2 61.61 40.52 86.8 65.45 39.7 

CPU time (sec) 3.2 2.72 2.64 3.3 2.88 2.73 

 

Table 3. Comparison of results of HOTS for 10 HP motor 

Variables/ indices/cost 
Conventional    

method 

Case 1 Case 2 

GA PSO EMA GA PSO EMA 

Independent variables        

Stator bore diameter (mm) 165 163 164 162.64 139 136 132.8 

Average air gap flux density  (Wb/m2) 0.45 0.465 0.466 0.462 0.445 0.45 0.438 

Stator current density (A/mm2) 4 4.04 4.17 4.16 3.9 4.02 3.8 

Air gap length (mm) 0.35 0.388 0.38 0.378 0.33 0.37 0.34 

Stator slot depth (mm) 25 26.84 26.9 26.6 27.88 27.3 25.76 

Stator slot width (mm) 7 7.5 7.4 7.35 6.5 6.6 6.4 

Stator core depth (mm) 26 27.5 26.7 26.4 27.89 22 25.32 

Rotor slot depth (mm) 13 13 10 10 14 12.8 13.67 

Rotor slot width (mm) 4 3.8 5 4.68 5 6.8 5 

Dependent Variables        

Gross iron length (mm) 133.2 122 130.2 136 189.8 186.6 216.4 

Rotor current density (A/mm2) 5.13 6.07 6.36 6.19 4.6 4.84 4.04 

Performance index        

Maximum to full-load torque ratio 2.5 2.8 2.73 2.38 3.04 2.06 2.43 

Starting to full-load torque ratio 0.975 1.25 1.28 1.15 1.01 1.02 0.98 

Starting to full-load current ratio 3.6 4.8 4.92 4.84 4.6 4.7 3.26 

Full-load efficiency 85.5 85.45 85.08 85.72 86.3 85.62 86.74 

Full-load power factor 0.9 0.92 0.92 0.929 0.92 0.91 0.92 

Maximum temperature rise 60 61.2 60.08 57.43 55.53 56 53.54 

Annual Cost        

Material cost (Rs) 815.19 752.5 757.2 732.6 940.19 820.91 966.69 

Power loss cost (Rs) 1533.55 1524.32 1523 1498.33 1461.4 1476.7 1408.94 

Energy loss cost (Rs) 7996.47 7948.33 7940 7822.56 7620.2 7700 7460.36 

Total cost (Rs)  10345.21 10225.1 10220 10053.49 10022 9997.6 9835.99 

 

Table 4. Performances of HOTs for 10 HP motor in the 20 trials 

Compared item 
Case 1 Case 2 

GA PSO EMA GA PSO EMA 

Maximum cost (Rs) 10499.46 10413.23 10236.79 10299.65 10161.12 10023.67 

Minimum cost (Rs) 10225 10220 10053.5 10022 9997.6 9835.99 

Mean cost (Rs) 10338 10319 10148.37 10154 10060 9928.46 

Standard deviation of cost (Rs) 87.67 55.76 38.6 84.23 50.6 40.67 

CPU time (sec) 3.42 2.68 2.46 3.5 2.87 2.57 

 

The results of the sample motors obtained using the proposed EMA technique are given in Tables 1 and 3 and compared with 

the results obtained using GA, PSO and conventional design methods. It can be seen that the proposed EMA method gives the 

minimum annual cost. When the total annual cost of the motor (Case 2) is chosen as objective function, the average flux density 

and the stator current density are appreciably reduced.   Accordingly, the proposed optimal designed motors have better 

efficiency, lower starting current and lower temperature rise than the optimal designed motor by minimizing the annual material 

cost only (Case 1). The nature of convergence characteristics of the GA, PSO and EMA algorithms are shown in Fig. 2.  It is clear 

from the Fig. 2 that the proposed EMA algorithm can avoid the short coming of premature convergence and can obtain better 

solution quality. 
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Fig 2. Convergence chracteristics of the compared HOTs for case 1(Motor 2) 

 

Tables 2and 4 summarize the performances of the GA and PSO approaches are obtained in 20 runs. The results show that the 

proposed EMA algorithm gives less annual cost and takes less CPU time than the other HOTs. 

VI. CONCLUSIONS 

This paper compares three different heuristic optimization techniques (HOTs) viz., genetic algorithm, particle swarm 

optimization and exchange market algorithm to solve energy efficient induction motor design problems considering the annual 

power loss cost. A comparative analysis has been done for different HOTs with respect to the total minimum cost, solution quality 

and convergence criteria. The effectiveness of these techniques have been demonstrated and validated on two sample motors design 

viz., 5 HP and 10 HP motors. The results achieved are quite encouraging and indicate viability of the proposed technique to deal 

with other machine design and power system optimization problems. On comparison of all the three HOTs, the operation of EMA 

is found to be easier and its application is more flexible with respect to its solution quality and convergence criteria. 

APPENDIX 

Specification of Test Motors 

 

Specifications Motor1 Motor 2 

Capacity 5 HP 10 HP 

Voltage 400 V 415 V 

Current 7.8 A 13.68 A 

Frequency 50 Hz 50 Hz 

No. of Poles 4 4 

Power factor 0.8 0.87 

Efficiency 83 % 87 % 
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