
© 2015 IJRAR August 2015, Volume 2, Issue 3                                   www.ijrar.org  (E-ISSN 2348-1269, P- ISSN 2349-5138) 

IJRAR19D1440 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 352 
 

The Primary Elements of the Laws of Motion – An 

Analysis 

*Dr.Shivaraj Gadigeppa Gurikar. Asst Professor of Physics. Govt First Grade College, Yelburga. 

Abstract 

This paper deals with studying and analyzing primary elements of Newton’s laws of motion and its interpretations. Sir Isaac 

Newton's three laws of motion describe the motion of massive bodies and how they interact. While Newton's laws may seem 

obvious to us today, more than three centuries ago they were considered revolutionary.  Newton was one of the most influential 

scientists of all time. His ideas became the basis for modern physics. He built upon ideas put forth from the works of previous 

scientists including Galileo and Aristotle and was able to prove some ideas that had only been theories in the past. He studied 

optics, astronomy and math — he invented calculus. (German mathematician Gottfried Leibniz is also credited with developing 

it independently at about the same time.)   Newton is perhaps best known for his work in studying gravity and the motion of 

planets. Urged on by astronomer Edmond Halley after admitting he had lost his proof of elliptical orbits a few years prior, Newton 

published his laws in 1687, in his seminal work "Philosophiæ Naturalis Principia Mathematica" (Mathematical Principles of 

Natural Philosophy) in which he formalized the description of how massive bodies move under the influence of external forces.  

In formulating his three laws, Newton simplified his treatment of massive bodies by considering them to be mathematical points 

with no size or rotation. This allowed him to ignore factors such as friction, air resistance, temperature, material properties, etc., 

and concentrate on phenomena that can be described solely in terms of mass, length and time. Consequently, the three laws cannot 

be used to describe precisely the behavior of large rigid or deformable objects; however, in many cases they provide suitably 

accurate approximations.   

Newton's laws pertain to the motion of massive bodies in an inertial reference frame, sometimes called a Newtonian reference 

frame, although Newton himself never described such a reference frame. An inertial reference frame can be described as a 3-

dimensional coordinate system that is either stationary or in uniform linear motion., i.e., it is not accelerating or rotating. He found 

that motion within such an inertial reference frame could be described by three simple laws. In particular, laws and qualities must 

be intelligible in terms of the shape, size, motion and impenetrability (or solidity) of bodies. In this way, one might conclude that 

Locke and Leibniz actually do not necessarily disagree on whether gravity can be made intelligible in mechanist terms; they 

simply disagree on the propriety of the contention that God could “superadd” a feature to bodies that cannot be made intelligible 

in that way. 
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Introduction 

Locke's point of view, we know that human beings—which are, or at least contain, material bodies with size, shape, motion and 

solidity, along with parts characterized by those qualities—are capable of thought, but since we cannot discern how any material 

thing could possibly have that capacity, we conclude that God may have superadded that feature to us, or to our bodies. Thought 

and gravity are dis-analogous in the sense that we did not require anything like Newton's theory to convince us that human beings 

can think, but they are otherwise analogous. Newton then attempts to make the following argument: since Leibniz would have to 

agree that thinking is not a mechanical process, and not mechanically explicable, he must agree that there is at least one aspect of 

the world that has the following two features, (1) it is not mechanical; and, (2) it is clearly not to be rejected on that ground alone. 

He attempts to liken gravity (as he understands it) to thinking (as he believes Leibniz is required to understand it), arguing that 

despite the fact that it is not mechanical—it cannot be explained mechanically—it should not be rejected on that ground. This 

argument may be predicated on the view that human beings, material things, or at least partially material things, do the thinking, 

rather than immaterial things, such as minds or souls, for if one attributes all thought to an immaterial mind or soul, then there is 

no pressure to say that anything in nature, or perhaps even any aspect of anything in nature, has a feature that cannot be 

mechanically explicated. If one accepts Locke's view (apparently also endorsed by Newton) that we should attribute thinking to 

material things, or to aspects of material things, then perhaps Newton has successfully followed Locke in likening gravity to 

thought, thereby making room for aspects of nature that are not mechanical after all. This vexing issue would continue to generate 

debates amongst Newton's and Leibniz's various followers in England, and on the Continent, respectively. 

Leibniz's most extensive debate with the Newtonians would not occur until the very end of his life. His celebrated correspondence 

with Samuel Clarke, Newton's friend and supporter in London in the early part of the eighteenth century, is his most famous 

interaction with the Newtonians, occurring right before his death in 1716 (Clarke and Leibniz 1717). Leibniz fomented the 

correspondence in November of 1715 by sending a short, provocative letter to Princess Caroline of Wales, one designed to provoke 

a response from Newton's circle in London. Leibniz knew well that Princess Caroline was a leading intellectual and political figure 

in England at the time, one who would surely wish to see the views of her countrymen defended against Leibniz's rather shocking 

claims about the religious consequences of Newtonian thinking. He opens his initial letter by mentioning both Locke and Newton, 

along with the issues about materiality and thinking that arose in his near exchange with Newton in 1712: 

Natural religion itself seems to decay [in England] very much. Many will have human souls to be material; others make God 

himself a corporeal being. Mr. Locke and his followers are uncertain at least whether the soul is not material and naturally 

perishable. Sir Isaac Newton says that space is an organ which God makes use of to perceive things by. But if God stands in need 

of any organ to perceive things by, it will follow that they do not depend altogether on him, nor were produced by him. (Clarke 

and Leibniz 1717: L 1: 1–3) 

Objective: 

This paper intends to explore three physical laws that, together, laid the foundation for classical mechanics. They describe the 

relationship between a body and the forces acting upon it, and its motion in response to those forces.  
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Newton ideas and methods  

In many ways, Newton eventually succeeded in convincing that his own ideas and methods were superior to those of the 

Cartesians—especially when it came to thinking about motion and its causes within nature—but this historical fact did not mean 

that Newtonianism, even broadly construed, became the dominant trend in natural philosophy during Newton's lifetime. On the 

contrary, Newton's views continued to be the subject of intense scrutiny and debate, especially amongst Leibniz and his followers 

(such as Christiaan Wolff) and fellow mechanists (such as Huygens). Indeed, a late-seventeenth-century debate between Cartesian 

and Newtonian ideas was supplanted by an early eighteenth century debate between Leibnizian and Newtonian views; the latter 

debate would continue in one form or another for the rest of the century: it was a driving force during the French Enlightenment, 

and remained a powerful stimulant to philosophical theorizing in the 1770s and 1780s, when Kant forged his magisterial “critical” 

system of philosophy, an approach that almost single-handedly set the philosophical agenda of the early nineteenth century. Hence 

Newton's influence on the eighteenth century did not take the form of a single philosophical program or movement; instead, it 

was the controversial nature of his ideas and methodology that drove much of the philosophical discussion. 

There are some irreducibly nationalist elements in the way that philosophy developed over the course of the eighteenth century, 

so it may be reasonable to chart Newton's impact country by country. Newton's ideas and methods were certainly most influential 

in England, where there grew to be a strong “Newtonian” movement—also called the “experimental philosophy” program—by 

roughly 1700. By the fin de siecle, it is probably safe to say that natural philosophy had become heavily Newtonian in England, 

at least in the sense that it had eclipsed both Cartesianism (Henry 2013: 124 and introduction to Voltaire 1738/1992: 7), and other 

local movements, such as Cambridge Platonism, which had exhibited a strong influence during the previous generation. One might 

put the point somewhat differently: to the extent that there was a dominant strand in England by 1700, it was the “experimental 

philosophy”, a view that was associated strongly with figures such as Boyle, Newton and Locke. Figures such as Hobbes had 

opposed this approach to solving philosophical problems, but had failed to gain nearly as much influence. 

 

 The First Law of Motion states, "A body at rest will remain at rest, and a body in motion will remain in motion unless it is acted 

upon by an external force." This simply means that things cannot start, stop, or change direction all by themselves. It takes some 

force acting on them from the outside to cause such a change. This property of massive bodies to resist changes in their state of 

motion is sometimes called inertia.   

 The Second Law of Motion describes what happens to a massive body when it is acted upon by an external force. It states, "The 

force acting on an object is equal to the mass of that object times its acceleration." This is written in mathematical form as F = 

ma, where F is force, m is mass, and a is acceleration. The bold letters indicate that force and acceleration are vector quantities, 

which means they have both magnitude and direction. The force can be a single force, or it can be the vector sum of more than 

one force, which is the net force after all the forces are combined.   When a constant force acts on a massive body, it causes it to 

accelerate, i.e., to change its velocity, at a constant rate. In the simplest case, a force applied to an object at rest causes it to 

accelerate in the direction of the force. However, if the object is already in motion, or if this situation is viewed from a moving 

reference frame, that body might appear to speed up, slow down, or change direction depending on the direction of the force and 

the directions that the object and reference frame are moving relative to each other.    
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The Third Law of Motion states, "For every action, there is an equal and opposite reaction." This law describes what happens to 

a body when it exerts a force on another body. Forces always occur in pairs, so when one body pushes against another, the second 

body pushes back just as hard. For example, when you push a cart, the cart pushes back against you; when you pull on a rope, the 

rope pulls back against you; when gravity pulls you down against the ground, the ground pushes up against your feet; and when 

a rocket ignites its fuel behind it, the expanding exhaust gas pushes on the rocket causing it to accelerate.   If one object is much, 

much more massive than the other, particularly in the case of the first object being anchored to the Earth, virtually all of the 

acceleration is imparted to the second object, and the acceleration of the first object can be safely ignored.  

For instance, if you were to throw a baseball to the west, you would not have to consider that you actually caused the rotation of 

the Earth to speed up ever so slightly while the ball was in the air. However, if you were standing on roller skates, and you threw 

a bowling ball forward, you would start moving backward at a noticeable speed.   The three laws have been verified by countless 

experiments over the past three centuries, and they are still being widely used to this day to describe the kinds of objects and 

speeds that we encounter in everyday life. They form the foundation of what is now known as classical mechanics, which is the 

study of massive objects that are larger than the very small scales addressed by quantum mechanics and that are moving slower 

than the very high speeds addressed by relativistic mechanics. 

 

Definition of Force 

When a constant force acts on a body, the forces result in the acceleration of the body.  However, if the object is already in motion, 

or if this situation is viewed from a moving frame of reference, the body might appear to speed up or slow down or change its 

direction depending on the direction of the force. 

Mathematically, we express the law as follows: 

f∝dPdt⇒f∝mv−mut⇒f∝m(v−u)t⇒f∝ma⇒f=kma 

Where k is the constant of proportionality and it comes out to be 1 when the values are taken in SI unit. Hence the final expression 

will be, 

F=ma 

Perhaps more importantly, Newton's view of motion, his understanding of space and time, and his approach to achieving 

knowledge of natural phenomena, helped to shape the agenda of British philosophy for the next fifty years. In addition to Newton's 

influence on Locke's thinking about matter and causation, explored above, both Berkeley and Hume expended considerable energy 

grappling with the wider consequences and implications of the Newtonian version of the experimental philosophy. For his part, 

Berkeley famously derided many Newtonians methods and ideas—sometimes exempting Newton himself from his conception of 

the worst philosophical excesses of his followers—including the rise of the calculus among mathematicians (in The Analyst) and 

the use of the idea of a force as the basic causal concept in natural philosophy (in De Motu—both reprinted in Berkeley 1992). 

Berkeley's theory of ideas, which arose in part from his reflections of what we would now call Locke's “empiricist” notion of 

representation, suggested to him that no idea can be abstract: each idea must represent a particular rather than a universal. Hence 

we can have an idea of a particular car, but not of a car in general (not of, as it were, the form of a car); we can have an idea of a 

particular shade of yellow, perhaps because we've just seen a lovely yellow rose at the florist, but not of yellow in general; and so 

on. Berkeley then argued that modern mathematics, especially the calculus, and modern natural philosophy, especially Newtonian 
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versions of it, were often reliant on abstract ideas, and therefore philosophically suspect. For instance, he contended that the very 

idea of absolute motion was suspect because we can represent to ourselves only various motions with particular features related 

to particular bodies in motion, but “absolute” motion cannot be rendered particular in anything like this way; it remains abstract 

(Downing 2005: 235). Thus although Newtonian views were considered to be essential to the rise of experimental philosophy in 

Britain, Berkeley derided them as insufficiently experimental, as overly reliant on representations of universals and of universal 

quantities, rather than on the representation of particulars. In a reflection of Malebranche's influence, Berkeley also argued that 

some Newtonians wrongly attributed genuine causal powers to ordinary material objects through their use of the concept of 

impressed force; wrongly, because Berkeley firmly rejected the notion that any body could exert any causal power. All causation 

in Berkeley's system is due either to the intervention of the divine in the course of history, or to spirits or minds, which are 

genuinely causally active. Finally, in an argument that would prefigure Mach's reactions to Newtonian conceptions of space, time 

and motion in the late nineteenth century—which were expressive of a broad commitment to “empiricism”—Berkeley contended 

that absolute space is a metaphysical aberration: philosophers should not posit any entity or thing that is beyond all possible 

perception. In sum, Berkeley was highly critical of many aspects of the Newtonian program, but for that very reason, it was 

Newton's ideas that helped to shape many of his philosophical projects. 

Motion and relativity 

For his part, Hume had a more nuanced reaction to the emergence of the Newtonian program (cf. Schliesser 2007 and DePierris 

2012). He certainly signaled his endorsement of the experimental philosophy—itself strongly associated with the Newtonians, 

along with figures like Boyle and Hooke, as we have seen—when he gave his Treatise the following subtitle: “being an attempt 

to introduce the experimental method of reasoning into moral subjects”. And one might argue that Hume made a kind of Lockean 

move when he chose to endorse the Newtonian program specifically in preference to the mechanical philosophy, which he 

regarded with suspicion. A famous comment from his History of England bolsters this interpretation: 

While Newton seemed to draw off the veil from some of the mysteries of nature, he showed at the same time the imperfections of 

the mechanical philosophy; and thereby restored her ultimate secrets to that obscurity, in which they ever did and ever will 

remain. (Hume 1854 [1754–61]: vol. 5: 374) 

The question of whether to accept, and of how to interpret, absolute space, time and motion, and the related question of how to 

conceive of the relation between Newton's work in natural philosophy and the flourishing Leibnizian-Wolffian metaphysics on 

the Continent, continued to drive conversations in the middle of the eighteenth century. Just a few years after Châtelet published 

her Institutions, the mathematician Leonard Euler presented a novel approach to these two questions in a short paper entitled 

“Reflexions sur l'Espace et le Temps”, first published in 1748 in the Mémoires de l'Académie des Sciences de Berlin. The Berlin 

Academy had been witnessing a vociferous debate between Wolffians and Newtonians since 1740 (a debate that would continue 

until roughly 1759), one in which Euler played a role. Whereas one might regard the British philosophers, especially Berkeley 

and Hume, as arguing that philosophical principles and commitments take a kind of precedence in driving one's interpretations of 

the concepts of force, motion, space and time, Euler argued that natural philosophy—specifically, mechanics—ought to take 

precedence. The famous first sentence of his essay indicates why: he contends that the principles of mechanics—for instance, the 

principle of inertia—are so well established that it would be foolish to doubt them (Euler 1748: 324). In particular, if one's 

metaphysical commitments stand in tension with the concepts of space and motion found in geometry and mechanics, then one 

must adjust those commitments accordingly. 
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Kants interpretation 

 Kant began grappling with Newtonian ideas at the very beginning of his career—he discussed the inverse-square law in his first 

publication (Kant 1747: § 10)—and they would remain central both to his magnum opus, the Critique of Pure Reason (Kant 

1787/1992) and to his Metaphysical Foundations of Natural Science (1786/2002). Early in the so-called pre-critical period, Kant 

diverged sharply from the approach toward natural philosophy defended by many Leibnizians in German-speaking Europe by 

deciding to accept the Newtonian theory of universal gravity, along with corresponding aspects of the Newtonian conception of 

matter, as a starting point for philosophical theorizing (Friedman 2012: 485–6). He makes this explicit already in 1763, in The 

Only Possible Argument: 

I will attempt to provide an explanation of the origin of the world system according to the general laws of mechanics, not an 

explanation of the entire natural order, but only of the great masses of matter and their orbits, which constitute the most crudest 

foundation of nature … I will presuppose the universal gravitation of matter according to Newton or his followers in this project. 

If there are any who believe that through a definition of metaphysics formulated according to their own taste they can annihilate 

the conclusions established by men of perspicacity on the basis of observation and by means of mathematical inference—if there 

are such persons, they can skip the following propositions as something which has only a remote bearing on the main aim of this 

essay. (Kant 1763: AK 2: 139) 

A rare case of Kantian irony, it seems. Already in this early text, Kant has clearly broken with his predecessors both in England 

and on the Continent, who insisted on disputing Newton's theory of universal gravity, either on metaphysical or theological 

grounds. Instead, Kant's work will be predicated on that theory. But Kant never became an orthodox Newtonian, any more than 

an orthodox Leibnizian (or Wolffian). This is evident from the radically different fates of two classic Newtonian concepts within 

the Kantian system: the idea that the theory of universal gravity shows that gravity is a feature of material bodies, along with the 

related concept of action at a distance, on the one hand; and absolute space, on the other. The quotation from 1763 above indicates 

that Kant was willing to endorse Newton's theory of universal gravity, despite the many objections raised against it by his 

Leibnizian predecessors. Indeed, he was also willing to accept the most radical interpretation of that theory, one according to 

which every material body in the world should be understood as bearing a feature called gravity, one that involves that body in 

actions at a distance on all other such bodies. As Kant puts it dramatically in Proposition 7 of the second chapter of Metaphysical 

Foundations of Natural Science: “The attraction essential to all matter is an immediate action of matter on other matter through 

empty space” (Kant 1786/2002: 223; AK 4: 512). 

 In the Critique of Pure Reason, for instance, Kant expressed a basically Leibnizian sympathy by arguing that there are 

fundamental metaphysical (and perhaps epistemic) difficulties with thinking of space as existing independently of all objects and 

all possible relations among them, as “actual entities “(wirkliche Wesen—A23/B37) in their own right. He does so in a passage 

that (perhaps confusingly) characterizes the Leibnizians as also defending a kind of realism about space, but we can focus solely 

on his criticism of the Newtonians: 

Those, however, who assert the absolute reality of space and time, whether they assume it to be subsisting or only inhering, must 

themselves come into conflict with the principles of experience. For if they decide in favor of the first (which is generally the 

position of the mathematical investigators of nature), then they must assume two eternal and infinite self-subsisting non-entities 
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(space and time), which exist (yet without there being anything real) only in order to comprehend everything real within 

themselves. (A39/B56) 

If one regards space (like time) as existing independently of all objects and all possible relations, and yet one admits that space is 

causally inert and imperceptible, as one presumably must in the late eighteenth century, then one is committed to the idea that 

there is a kind of infinite and eternal non-entity in the world. Space is a kind of non-entity, Kant suggests, because on the one hand 

it is said to exist independently of everything else, and yet on the other hand, it is said to be causally inert and imperceptible, 

which would distinguish it from every other sort of thing that exists.  

 

 

 

Conclusion 

Newtonian theory of motion as attributing a special force or nature to material objects, there is an interpretation of Newton that is 

consistent with the new theory of ideas. He writes (Berkeley 1992: De Motu, §6): 

Again, force, gravity, and terms of that sort are more often used in the concrete (and rightly so) so as to connote the body in 

motion, the effort of resisting, etc. But when they are used by philosophers to signify certain natures carved out and abstracted 

from all these things, natures which are not objects of sense, nor can be grasped by any force of intellect, nor pictured by the 

imagination, then indeed they breed errors and confusion. 

There is little doubt, then, that the new British philosophy represented by Locke, Berkeley, and Hume in the early-to-mid 

eighteenth century was concerned to present interpretations of Newton's work that were consistent with their overarching 

philosophical commitments, principles and methods, or to alter those commitments, principles and methods as necessary. 

 References 

1. Ott, Thomas (24 August 2006). "The Galactic Centre". Max-Planck-Institut für extraterrestrische Physik. 

Archived from the original on 4 September 2006. Retrieved 17 November 2014. 

2.  Smith, Michael David (2004). "Cloud formation, Evolution and Destruction". The Origin of Stars. Imperial 

College Press. pp. 53–86. ISBN 978-1-86094-501-4. 

3.  Smith, Michael David (2004). "Massive stars". The Origin of Stars. Imperial College Press. pp. 185–99. ISBN 

978-1-86094-501-4. 

4.  Van den Bergh, Sidney (1999). "The Early History of Dark Matter". Publications of the Astronomical Society of 

the Pacific. 111 (760): 657–60. arXiv:astro-ph/9904251.  

5. Kneebone, G.T. (1963). Mathematical Logic and the Foundations of Mathematics: An Introductory Survey. 

Dover. p. 4. ISBN 978-0-486-41712-7. Mathematics. is simply the study of abstract structures, or formal patterns 

of connectedness. 

6.  LaTorre, Donald R.; Kenelly, John W.; Biggers, Sherry S.; Carpenter, Laurel R.; Reed, Iris B.; Harris, Cynthia 

R. (2011). Calculus Concepts: An Informal Approach to the Mathematics of Change. Cengage Learning. p. 2. 

ISBN 978-1-4390-4957-0. Calculus is the study of change—how things change, and how quickly they change. 

http://www.ijrar.org/


© 2015 IJRAR August 2015, Volume 2, Issue 3                                   www.ijrar.org  (E-ISSN 2348-1269, P- ISSN 2349-5138) 

IJRAR19D1440 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 359 
 

7.  Ramana (2007). Applied Mathematics. Tata McGraw–Hill Education. p. 2.10. ISBN 978-0-07-066753-2. The 

mathematical study of change, motion, growth or decay is calculus. 

8.  Ziegler, Günter M. (2011). "What Is Mathematics?". An Invitation to Mathematics: From Competitions to 

Research. Springer. p. vii. ISBN 978-3-642-19532-7. 

9.  Mura, Roberta (December 1993). "Images of Mathematics Held by University Teachers of Mathematical 

Sciences". Educational Studies in Mathematics. 25 (4): 375–85. doi:10.1007/BF01273907. JSTOR 3482762. 

10.  Tobies, Renate & Helmut Neunzert (2012). Iris Runge: A Life at the Crossroads of Mathematics, Science, and 

Industry. Springer. p. 9. ISBN 978-3-0348-0229-1. [I]t is first necessary to ask what is meant by mathematics in 

general. Illustrious scholars have debated this matter until they were blue in the face, and yet no consensus has 

been reached about whether mathematics is a natural science, a branch of the humanities, or an art form. 

11.  Steen, L.A. (April 29, 1988). The Science of Patterns Science, 240: 611–16. And summarized at Association for 

Supervision and Curriculum Development Archived October 28, 2010, at the Wayback Machine, www.ascd.org. 

12.  Devlin, Keith, Mathematics: The Science of Patterns: The Search for Order in Life, Mind and the Universe 

(Scientific American Paperback Library) 1996, ISBN 978-0-7167-5047-5 

13.  Wise, David. "Eudoxus' Influence on Euclid's Elements with a close look at The Method of Exhaustion". 

jwilson.coe.uga.edu. Archived from the original on June 1, 2014. Retrieved October 26, 2014. 

14.  Eves, p. 306 

15.  Peterson, p. 12 

16.  Wigner, Eugene (1960). "The Unreasonable Effectiveness of Mathematics in the Natural Sciences". 

Communications on Pure and Applied Mathematics. 13 (1): 1–14. Bibcode:1960CPAM .131W. 

doi:10.1002/cpa.3160130102. Archived from the original on February 28, 2011. 

17.  Dehaene, Stanislas; Dehaene-Lambertz, Ghislaine; Cohen, Laurent (August 1998). "Abstract representations of 

numbers in the animal and human brain". Trends in Neurosciences. 21 (8): 355–61. doi:10.1016/S0166-

2236(98)01263-6. PMID 9720604. 

18.  See, for example, Raymond L. Wilder, Evolution of Mathematical Concepts; an Elementary Study, passim 

19.  Zaslavsky, Claudia. (1999). Africa Counts : Number and Pattern in African Culture. Chicago Review Press. 

ISBN 978-1-61374-115-3. OCLC 843204342. 

20.  Kline 1990, Chapter 1. 

21.  "Egyptian Mathematics – The Story of Mathematics". www.storyofmathematics.com. Archived from the original 

on September 16, 2014. Retrieved October 27, 2014. 

22.  "Sumerian/Babylonian Mathematics – The Story of Mathematics". www.storyofmathematics.com. Archived 

from the original on September 7, 2014. Retrieved October 27, 2014. 

23.  Boyer 1991, "Mesopotamia" pp. 24–27. 

24.  Heath, Thomas Little (1981) [1921]. A History of Greek Mathematics: From Thales to Euclid. New York: Dover 

Publications. p. 1. ISBN 978-0-486-24073-2. 

25.  Boyer 1991, "Euclid of Alexandria" p. 119. 

26.  Boyer 1991, "Archimedes of Syracuse" p. 120. 

27.  Boyer 1991, "Archimedes of Syracuse" p. 130. 

28.  Boyer 1991, "Apollonius of Perga" p. 145. 

http://www.ijrar.org/


© 2015 IJRAR August 2015, Volume 2, Issue 3                                   www.ijrar.org  (E-ISSN 2348-1269, P- ISSN 2349-5138) 

IJRAR19D1440 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 360 
 

29.  Boyer 1991, "Greek Trigonometry and Mensuration" p. 162. 

30.  Boyer 1991, "Revival and Decline of Greek Mathematics" p. 180. 

31.  "Indian Mathematics – The Story of Mathematics". www.storyofmathematics.com. Archived from the original 

on April 13, 2014. Retrieved October 27, 2014. 

32.  "Islamic Mathematics – The Story of Mathematics". www.storyofmathematics.com. Archived from the original 

on October 17, 2014. Retrieved October 27, 2014. 

33.  Saliba, George. (1994). A history of Arabic astronomy : planetary theories during the golden age of Islam. New 

York University Press. ISBN 0-8147-7962-X. OCLC 28723059. 

34.  "17th Century Mathematics – The Story of Mathematics". www.storyofmathematics.com. Archived from the 

original on September 16, 2014. Retrieved October 27, 2014. 

35.  "Euler – 18th Century Mathematics – The Story of Mathematics". www.storyofmathematics.com. Archived from 

the original on May 2, 2014. Retrieved October 27, 2014. 

36.  "Gauss – 19th Century Mathematics – The Story of Mathematics". www.storyofmathematics.com. Archived 

from the original on July 25, 2014. Retrieved October 27, 2014. 

37.  "20th Century Mathematics – Gödel". The Story of Mathematics. Archived from the original on September 16, 

2014. Retrieved October 27, 2014. 

38.  Sevryuk 2006, pp. 101–09. 

39.  "mathematic (n.)". Online Etymology Dictionary. Archived from the original on March 7, 2013. 

40.  Both meanings can be found in Plato, the narrower in Republic 510c, but Plato did not use a math- word; Aristotle 

did, commenting on it. μαθηματική. Liddell, Henry George; Scott, Robert; A Greek–English Lexicon at the 

Perseus Project. OED Online, "Mathematics". 

41.  "Pythagoras – Greek Mathematics – The Story of Mathematics". www.storyofmathematics.com. Archived from 

the original on September 17, 2014. Retrieved October 27, 2014. 

42.  Boas, Ralph (1995) [1991]. "What Augustine Didn't Say About Mathematicians". Lion Hunting and Other 

Mathematical Pursuits: A Collection of Mathematics, Verse, and Stories by the Late Ralph P. Boas, Jr. Cambridge 

University Press. p. 257. 

43.  The Oxford Dictionary of English Etymology, Oxford English Dictionary, sub "mathematics", "mathematic", 

"mathematics" 

44.  "maths, n." and "math, n.3". Oxford English Dictionary, on-line version (2012). 

http://www.ijrar.org/

