The b-Chromatic Number of $\mathrm{L}\left(\mathrm{CH}_{\mathrm{n}}\right)$ and $\mathrm{M}\left(\mathrm{CH}_{n}\right)$

${ }^{1}$ S.Karthikeyan, ${ }^{2}$ U.Mary
${ }^{1}$ Assistant Professor, ${ }^{2}$ Associate Professor
${ }^{1}$ Department of Mathematics, KPR Institute of Engineering and Technology, Coimbatore, India.
${ }^{2}$ Department of Mathematics,
Nirmala College for Women, Coimbatore, India.

Abstract

The helm graph H_{n} is the graph obtained from wheel graph $W_{n}=C_{n}+K_{1}$ by adjoining a pendent edge node of the cycle while the closed helm is the graph obtained by joining each pendent vertex to form a cycle. In this paper we find the bchromatic number of line graph of closed helm $L\left(\mathrm{CH}_{n}\right)$ and Middle graph $M\left(\mathrm{CH}_{n}\right)$.

Keywords: Proper colouring, b-colouring, b-chromatic number, Closed helm graph, Line graph, Middle graph.

I. INTRODUCTION

A b-coloring by k-colors is a proper coloring of the vertices of a graph G such that in each color class there exists a vertex which has neighbors in all the other $k-1$ color classes. The b-chromatic number $\varphi(G)$ is the largest integer k such that G admits a b-coloring with k-colors. The concept of b-coloring was introduced by Irving and Manlove [3] in 1999 and showed that the problem of determining b-chromatic number is NP-hard for general graphs but it is polynomial for trees. The upper bounds for the b-chromatic number were investigated in the work of Kouider M and Maheo M [5]. J.Vernold Vivin, M. Venkatachalam [9] investigated the b-chromatic number of corona graphs. The b-chromatic number of helm and closed helm graph were examined by Vaidya S K and Shukla M S [11]. Nadeem Ansari and Chandel R S and Rizwana Jamal [15] find out the b-chromatic number of Prism graph families. In this paper we examine the the b-chromatic number of line graph $L(G)$, Middle graph $M(G)$ of closed helm graph.

II. PRELIMINARIES

2.1 Line Graph

The line graph $L(G)$ [14] of a graph G is the graph whose vertex set is $E(G)$ and two vertices are adjacent in $L(G)$ whenever they are incident in G.

2.2 Middle Graph

The middle graph $M(G)$ [14] of a graph G is the graph whose vertex set is $V(G) \cup E(G)$ and in which two vertices are adjacent if and only if either they are adjacent edges of G or one is a vertex of G and the other is an edge incident on it.

III. MAIN RESULTS

3.1 Theorem

For the line graph of closed helm graph, $\varphi\left[L\left(C H_{n}\right)\right]=n, n>6$.

Proof:

A closed helm graph CH_{n} is the graph obtained from a cycle from a helm graph H_{n} by joining each pendent vertex to form a cycle. Let us consider the line graph of closed helm $L\left(C H_{n}\right), n>6$. The vertex set of the line graph of closed helm can be partitioned as follows:

- The vertices introduced in the rim edges of $C H_{n}$ form a complete graph K_{n} and the vertex set be $\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$,
- The vertices introduced in the inner cycle of $C H_{n}$ denoted as $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$,
- The vertices introduced in the pendent edges of H_{n} denoted as $\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right\}$,
- And the vertices introduced in the outer cycle of $C H_{n}$ denoted as $\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\}$.

The vertex v_{1} is adjacent with $v_{2}, v_{n}, u_{1}, u_{2}$ and w_{1}, w_{2}.
The vertex v_{n} is adjacent with $v_{1}, v_{n-1}, u_{1}, u_{n}$ and w_{1}, w_{n}.
The remaining vertices in the inner cycle v_{i} for $i=2,3,4, \ldots, n-1$, are adjacent with $v_{i-1}, v_{i+1}, u_{i}, u_{i+1}$ and w_{i}, w_{i+1}.
The vertex w_{1} is connected with $v_{1}, v_{n}, x_{1}, x_{n}$ and u_{1}.
The vertex w_{n} is connected with $v_{n}, v_{n-1}, x_{n}, x_{n-1}$ and u_{n}.
The remaining verities introduced in the pendent edges of helm are w_{i} for $i=2,3,4, \ldots, n-1$, adjacent with $v_{i-1}, v_{i}, x_{i-1}, x_{i}$ and u_{i}.
Now the vertex introduced in the outer cycle of closed helm x_{1} is adjacent with w_{1}, w_{2} and x_{2}, x_{n}.
Vertex x_{n} is adjacent with w_{1}, w_{n} and x_{1}, x_{n-1}.
The remaining vertices x_{i} for $i=2,3,4, \ldots, n-1$, is adjacent with w_{i}, w_{i+1} and x_{i-1}, x_{i+1}.
The line graph of closed helm graph contains a complete graph K_{n}. Assigning the colours to $L\left(\mathrm{CH}_{n}\right)$ as follows. First we color the complete graph K_{n} with n colours as $\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$. Now introduce a new colour c_{n+1} to the remaining vertices of the line graph of closed helm graph. Introducing a new colour to these vertices cannot harmonizes the new colour c_{n+1}. Since the
vertices introduced in the inner cycle of closed helm v_{i} for $i=1,2,3, \ldots, n$ having maximum degree of 6 and the vertices introduced in the pendent edges of helm w_{i} for $i=1,2,3, \ldots, n$ having maximum degree of 5 and the vertices introduced in the outer cycle of closed helm x_{i} for $i=1,2,3, \ldots, n$ having maximum degree of 4 . There fore c_{n} is the maximum colouring for $L\left(\mathrm{CH}_{n}\right)$. Hence the b-chromatic number line graph of closed helm graph is $n, n>6$.

3.2 Theorem

For the Middle graph of closed helm graph, $\varphi\left[M\left(C H_{n}\right)\right]=n+1, n>6$.

Proof:

Let us consider the middle graph of closed helm $M\left(\mathrm{CH}_{n}\right), n>6$. The vertex set of middle graph of closed helm can be portioned as follows:

- The apex vertex u and vertices introduced in the rim edges of $C H_{n}$ form a complete graph K_{n+1} and the vertex set be $\left\{u, u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$,
- The vertices introduced in the inner cycle of $C H_{n}$ denoted as $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{2 n}\right\}$,
- The vertices introduced in the pendent edges of H_{n} denoted as $\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right\}$,
- And the vertices introduced in the outer cycle of $C H_{n}$ denoted as $\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{2 n}\right\}$.

The vertex v_{1} is adjacent with $v_{2}, v_{2 n}$ and u_{1}, w_{1}.
The vertex $v_{2 n}$ is adjacent with $v_{1}, v_{2}, v_{2 n-1}, v_{2 n-2}$ and $w_{1}, w_{n}, u_{1}, u_{n}$.
Vertex v_{2} is adjacent with $v_{1}, v_{3}, v_{4}, v_{2 n}$ and $w_{1}, w_{2}, u_{1}, u_{2}$.
Vertex $v_{2 n-1}$ is adjacent with $v_{2 n}, v_{2 n-2}, v_{4}, v_{2 n}$ and w_{n}, u_{n}.
The remaining vertices in the inner cycle v_{i} for $i=4,6,8, \ldots, 2 n-2$, are adjacent with $v_{i-1}, v_{i+1}, v_{i-2}, v_{i+2}$ and vertices introduced in pendent edge of helm and in K_{n+1}.
The vertices v_{j} for $j=3,5,7, \ldots, 2 n-3$, are adjacent with v_{i-1}, v_{i+1} and vertices introduced in pendent edges of helm and in K_{n+1}.
The vertex w_{1} is connected with $v_{1}, v_{2}, v_{2 n}, x_{1}, x_{2}, x_{2 n}$ and u_{1}.
The vertex w_{n} is connected with $v_{2 n}, v_{2 n-1}, v_{2 n-2}, x_{2 n}, x_{2 n-1}, x_{2 n-2}$ and u_{n}.
The remaining verities introduced in the pendent edges of helm are w_{i} for $i=2,3,4, \ldots, n-1$, adjacent with $v_{i}, v_{i+1}, v_{i+2}, x_{i}, x_{i+1}, x_{i+2}$ and u_{n}.
Now the vertex introduced in the outer cycle of closed helm x_{1} is adjacent with $x_{2}, x_{2 n}$ and w_{1}.
Vertex $x_{2 n}$ is adjacent with $x_{1}, x_{2 n-1}$ and w_{1}, w_{n}.
The remaining vertices x_{i} for $i=2,3,4, \ldots, 2 n-1$, is adjacent with x_{i}, x_{i+1} and the vertices introduced in the pendent vertices.
The middle graph of closed helm graph contains a complete graph K_{n+1}. Assigning the colours to $M\left(\mathrm{CH}_{n}\right)$ as follows. First we colour the complete graph K_{n+1} with with $n+1$ colours as $\left\{c_{1}, c_{2}, \ldots, c_{n+1}\right\}$. Now introduce a new colour c_{n+2} to the remaining vertices of the middle graph of closed helm graph. Introducing a new colour to these vertices cannot harmonizes the new colour c_{n+1}. Since the vertices introduced in the inner cycle of closed helm v_{i} for $i=1,3,5, \ldots, 2 n-1$ having maximum degree of 4 and the vertices v_{j} for $j=2,4,6, \ldots, 2 n$ having maximum degree of 8 the vertices introduced in the pendent edges of helm w_{i} for $i=1,3,5, \ldots, n$ having maximum degree of 7 and the vertices introduced in the outer cycle of closed helm x_{i} for $i=1,3,5, \ldots, 2 n-1$ having maximum degree of 3 . The vertices for $i=2,4,6, \ldots, 2 n$ having maximum degree of 6 . There fore c_{n+1} is the maximum colouring for $M\left(\mathrm{CH}_{n}\right)$. Hence the b-chromatic number of middle graph of closed helm graph is $n+1, n>6$.

IV. RESULTS

For the line graph of closed helm graph, $\varphi\left[L\left(C H_{n}\right)\right]=n, n>6$.

- For the Middle graph of closed helm graph, $\varphi\left[M\left(C H_{n}\right)\right]=n+1, n>6$.

References

[1] J. Clark and D. A. Holton (1991), A First Look at Graph Theory, World Scientific, New Zealand.
[2] L. Hemminger and L. W. Beineke (1978), "Line graphs and line digraphs", Selected Topics in Graph theory, Academic Press, 271-305.
[3] R.W. Irving and D.F. Manlove (1999), "The b chromatic number of a graph", Discrete Applied Mathematics, 91(1-3), 127141.
[4] F.Harary (1997), Graph Theory, Narosha Publishing House, Calcutta.
[5] Mekkia Kouider and Maheo (2002), "Some bounds for the b-chromatic number some families of graphs," Discrete Mathematics, 256, 267-277.
[6] Sandi Klavzar and Marko Jakovac (2010), "The b-chromatic number cubic graphs," Graphs and Combinatorics, 26, 107-118.
[7] S. Chandra Kumar and T. Nicholas (2012), "b-coloring in Square of Cartesian Product of Two Cycles", Annals of Pure and Applied Mathematics 1(2), 131-137.
[8] R. Balakrishnan and K. Ranganathan (2012), A textbook of Graph Theory, Springer, New York.
[9] J.Vernold Vivin, M. Venkatachalam (2012), "The b-chromatic number of corona graphs", Utilitas Mathematica, 88, 299307.
[10] M. Alkhateeb (2012), On b-colourings and b-continuity of graphs, Ph.D Thesis, Technische Universitt Bergakademie, Freiberg, Germany.
[11] S. K. Vaidya, M. S. Shukla (2014), "b-Chromatic number of helm and closed helm", International Journal of Mathematics and Scientific Computing, 4(2), 43-47.
[12] R. Balakrishnan, S. Francis Raj and T. Kavaskar (2014), " b-Chromatic Number of Cartesian Product of Some Families of Graphs", Graphs and Combinatorics, 30, 511-520.
[13] D.Vijayalakshmi and K. Thilagavathi (2012),"b-Chromatic Number of $T(K 1, n, n), T(F 1, n), T(B n, n), T(K m, n), T(C n)$ and $T(p n)$ ", Far East Journal of Applied Mathematics, 77, 25-39.
[14] R. Arundhadhi, V.Ilyarani (2017), "Total colouring of Closed Helm, Flower and Bistar Graph Family", International Journal of Scientific and Research Publications, 616-622.
[15] Nadeem Ansari and Chandel R S and Rizwana Jamal (2018), "b-chromatic number of Prism graphfamilies", An International Journal of Applications of Applied Mathematics, 13, 961-964.

