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Abstract 

This paper attempts to study Ricci calculus constitutes the rules of index notation and manipulation for tensors 

and tensor fields on a differentiable manifold, with or without a metric tensor field or connection.     It is also the modern 

name for what used to be called the absolute differential calculus (the foundation of tensor calculus), developed by 

Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita 

in 1900. A component of a tensor is a real number that is used as a coefficient of a basis element for the tensor space. The 

tensor is the sum of its components multiplied by their corresponding basis elements. Tensors and tensor fields can be 

expressed in terms of their components, and operations on tensors and tensor fields can be expressed in terms of operations 

on their components. The description of tensor fields and operations on them in terms of their components is the focus of 

the Ricci calculus. This notation allows an efficient expression of such tensor fields and operations. While much of the 

notation may be applied with any tensors, operations relating to a differential structure are only applicable to tensor fields. 

Where needed, the notation extends to components of non-tensors, particularly multidimensional arrays. 

 

A tensor may be expressed as a linear sum of the tensor product of vector and covector basis elements. The 

resulting tensor components are labelled by indices of the basis. Each index has one possible value per dimension of the 

underlying vector space. The number of indices equals the degree (or order) of the tensor. For compactness and 

convenience, the Ricci calculus incorporates Einstein notation, which implies summation over indices repeated within a 

term and universal quantification over free indices. Expressions in the notation of the Ricci calculus may generally be 

interpreted as a set of simultaneous equations relating the components as functions over a manifold, usually more 

specifically as functions of the coordinates on the manifold. This allows intuitive manipulation of expressions with 

familiarity of only a limited set of rules. 
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Introduction 

An th-rank tensor in -dimensional space is a mathematical object that has  indices and  components and obeys 

certain transformation rules. Each index of a tensor ranges over the number of dimensions of space. However, the 

dimension of the space is largely irrelevant in most tensor equations (with the notable exception of the 

contracted Kronecker delta). Tensors are generalizations of scalars (that have no indices), vectors (that have exactly 

one index), and matrices (that have exactly two indices) to an arbitrary number of indices. 

Tensors provide a natural and concise mathematical framework for formulating and solving problems in areas of physics 

such as elasticity, fluid mechanics, and general relativity. 
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The notation for a tensor is similar to that of a matrix (i.e., ), except that a tensor , , , etc., 

may have an arbitrary number of indices. In addition, a tensor with rank  may be of mixed type , consisting 

of  so-called "contravariant" (upper) indices and  "covariant" (lower) indices. Note that the positions of the slots in 

which contravariant and covariant indices are placed are significant so, for example,  is distinct from . 

While the distinction between covariant and contravariant indices must be made for general tensors, the two are equivalent 

for tensors in three-dimensional Euclidean space, and such tensors are known as Cartesian tensors. 

Objects that transform like zeroth-rank tensors are called scalars, those that transform like first-rank tensors are 

called vectors, and those that transform like second-rank tensors are called matrices. In tensor notation, a vector  would 

be written , where , ..., , and matrix is a tensor of type , which would be written  in tensor notation. 

Tensors may be operated on by other tensors (such as metric tensors, the permutation tensor, or the Kronecker delta) or 

by tensor operators (such as the covariant derivative). The manipulation of tensor indices to produce identities or to 

simplify expressions is known as index gymnastics, which includes index lowering and index raising as special cases. 

These can be achieved through multiplication by a so-called metric tensor , , , etc., e.g., 

 

  

(1) 

 

  

(2) 

(Arfken 1985, p. 159). 

Tensor notation can provide a very concise way of writing vector and more general identities. For example, in tensor 

notation, the dot product  is simply written 

 

(3) 

where repeated indices are summed over (Einstein summation). Similarly, the cross product can be concisely written as 

 

(4) 

where  is the permutation tensor. 

Contravariant second-rank tensors are objects which transform as 

 

(5) 

Covariant second-rank tensors are objects which transform as 

 

(6) 

Mixed second-rank tensors are objects which transform as 
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(7) 

If two tensors  and  have the same rank and the same covariant and contravariant indices, then they can be added in the 

obvious way, 

   

(8) 

 
 

 

(9) 

 

 

 

(10) 

The generalization of the dot product applied to tensors is called tensor contraction, and consists of setting two unlike 

indices equal to each other and then summing using the Einstein summation convention. Various types of derivatives can 

be taken of tensors, the most common being the comma derivative and covariant derivative. 

If the components of any tensor of any tensor rank vanish in one particular coordinate system, they vanish in all coordinate 

systems. A transformation of the variables of a tensor changes the tensor into another whose components are 

linear homogeneous functions of the components of the original tensor. 

A tensor space of type  can be described as a vector space tensor product between  copies of vector 

fields and  copies of the dual vector fields, i.e., one-forms. For example, 

 

(11) 

is the vector bundle of -tensors on a manifold , where  is the tangent bundle of  and  is its dual. 

Tensors of type  form a vector space. This description generalized to any tensor type, and an invertible linear 

map  induces a map , where  is the dual vector space and  the Jacobian, defined by 

 

(12) 

where  is the pullback map of a form is defined using the transpose of the Jacobian. This definition can be extended 

similarly to other tensor products of  and . When there is a change of coordinates, then tensors transform similarly, 

with  the Jacobian of the linear transformation. 

Objective: 

This paper intends to explore and analyze Ricci calculus as a formal system in which index notation is used to define 

tensors and tensor fields and the rules for their manipulation.  

Ricci calculus , tensor components 

While most of the expressions of the Ricci calculus are valid for arbitrary bases, the expressions involving partial 

derivatives of tensor components with respect to coordinates apply only with a coordinate basis: a basis that is defined 

through differentiation with respect to the coordinates. Coordinates are typically denoted by xμ, but do not in general form 

the components of a vector. In flat spacetime with linear coordinatization, a tuple of differences in coordinates, Δxμ, can 
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be treated as a contravariant vector. With the same constraints on the space and on the choice of coordinate system, the 

partial derivatives with respect to the coordinates yield a result that is effectively covariant. Aside from use in this special 

case, the partial derivatives of components of tensors do not in general transform covariantly, but are useful in building 

expressions that are covariant, albeit still with a coordinate basis if the partial derivatives are explicitly used, as with the 

covariant 

 tensor having specific transformation properties (cf., a covariant tensor). To examine the transformation properties of a 

contravariant tensor, first consider a tensor of rank 1 (a vector) 

 

(1) 

for which 

 

(2) 

Now let , then any set of quantities  which transform according to 

 

(3) 

or, defining 

 

(4) 

according to 

 

(5) 

is a contravariant tensor. Contravariant tensors are indicated with raised indices, i.e., . 

Covariant tensors  

tensor with differing transformation properties, denoted . However, in three-dimensional Euclidean space, 

 

(6) 

for , 2, 3, meaning that contravariant and covariant tensors are equivalent. Such tensors are known as Cartesian 

tensor. The two types of tensors do differ in higher dimensions, however. 

Contravariant four-vectors satisfy 

 

(7) 

where  is a Lorentz tensor. 

To turn a covariant tensor  into a contravariant tensor  (index raising), use the metric tensor  to write 
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(8) 

Covariant and contravariant indices can be used simultaneously in a mixed tensor. 

Tensors are simply mathematical objects that can be used to describe physical properties, just like scalars and vectors. In 

fact tensors are merely a generalisation of scalars and vectors; a scalar is a zero rank tensor, and a vector is a first rank 

tensor. 

The rank (or order) of a tensor is defined by the number of directions (and hence the dimensionality of the array) required 

to describe it. For example, properties that require one direction (first rank) can be fully described by a 3×1 column vector, 

and properties that require two directions (second rank tensors), can be described by 9 numbers, as a 3×3 matrix. As such, 

in general an nth rank tensor can be described by 3n coefficients. 

The need for second rank tensors comes when we need to consider more than one direction to describe one of these 

physical properties. A good example of this is if we need to describe the electrical conductivity of a general, anisotropic 

crystal. We know that in general for isotropic conductors that obey Ohm's law: 

j = σE 

Which means that the current density j is parallel to the applied electric field, E and that each component of j is linearly 

proportional to each component of E. (e.g. j1 = σE1). 

However in an anisotropic material, the current density induced will not necessarily be parallel to the applied electric field 

due to preferred directions of current flow within the crystal (a good example of this is in graphite). This means that in 

general each component of the current density vector can depend on all the components of the electric field: 

 

Conclusion 

Tensors are mathematical objects that can be used to describe physical properties, just like scalars and vectors. In fact 

tensors are merely a generalisation of scalars and vectors; a scalar is a zero rank tensor, and a vector is a first rank tensor. 

The rank (or order) of a tensor is defined by the number of directions (and hence the dimensionality of the array) required 

to describe it. For example, properties that require one direction (first rank) can be fully described by a 3×1 column vector, 

and properties that require two directions (second rank tensors), can be described by 9 numbers, as a 3×3 matrix. As such, 

in general an nth rank tensor can be described by 3n coefficients. 

The need for second rank tensors comes when we need to consider more than one direction to describe one of these 

physical properties.  

j = σE 

Which means that the current density j is parallel to the applied field, E and that each component of j is linearly 

proportional to each component of E. (e.g. j1 = σE1). 
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However in an anisotropic material, the current density induced will not necessarily be parallel to the applied electric field 

due to preferred directions of current flow within the crystal (a good example of this is in graphite). This means that in 

general each component of the current density vector can depend on all the components of the field. 
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