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Abstract 

Traffic congestion remains a significant challenge in urban environments, imposing substantial economic, 

environmental, and social costs. This research introduces Adaptive Neural Traffic Orchestration (ANTO), a 

comprehensive AI-driven framework for dynamic congestion mitigation in urban transportation networks. 

Leveraging deep reinforcement learning and recurrent neural network architectures, ANTO adaptively 

responds to real-time traffic conditions by orchestrating signal timing, route guidance, and demand 

management interventions. Our experimental evaluation on real-world traffic data from three metropolitan 

areas demonstrates that ANTO reduces average travel times by 27.3% and congestion-related delays by 36.2% 

compared to traditional fixed-time control systems. Implementation of ANTO in simulation environments 

further shows a 22.8% decrease in emissions and significant improvements in network reliability metrics. This 

paper presents the architectural components of ANTO, its algorithmic foundations, and experimental 

validation that establishes its efficacy for next-generation intelligent transportation systems. 

Keywords: Deep reinforcement learning, traffic optimization, neural networks, intelligent transportation 

systems, congestion mitigation 

1. Introduction 

Urban traffic congestion represents one of the most pressing challenges in modern transportation 

infrastructure, with significant economic costs estimated at $88 billion annually in the United States alone [1]. 

Traditional traffic management approaches often employ static control mechanisms that fail to adapt to 

dynamic traffic patterns, resulting in suboptimal network performance, especially during unexpected 

conditions or peak periods [2]. The emergence of artificial intelligence techniques, coupled with advancements 

in sensing and communication technologies, has created new opportunities for developing adaptive traffic 

management systems that can dynamically respond to changing traffic conditions [3]. 
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Recent research has demonstrated the promise of deep learning and reinforcement learning techniques for 

traffic signal control [4], route optimization [5], and demand prediction [6]. However, most existing 

approaches address only isolated aspects of traffic management rather than orchestrating a comprehensive 

solution across multiple control dimensions. Furthermore, the generalization capabilities of these solutions 

across different network topologies and traffic conditions remain limited [7]. 

This paper introduces Adaptive Neural Traffic Orchestration (ANTO), a novel framework that leverages 

neural network architectures and reinforcement learning to dynamically optimize traffic flow across urban 

networks. ANTO's key innovation lies in its ability to simultaneously coordinate multiple traffic management 

strategies, including signal timing, route guidance, and demand management, while continuously adapting to 

evolving traffic patterns. Unlike previous approaches that focus on isolated intersections or corridors, ANTO 

implements a network-wide optimization strategy that considers the complex interactions between different 

parts of the transportation system. 

Our research makes the following contributions: 

1. Development of a scalable neural architecture that integrates real-time traffic state representation with 

predictive modeling capabilities for proactive congestion management. 

2. Introduction of a multi-objective reinforcement learning algorithm that balances competing traffic 

management goals, including travel time minimization, emissions reduction, and fairness in resource 

allocation. 

3. Empirical validation of ANTO using both simulation environments and real-world traffic data from 

three metropolitan areas, demonstrating significant improvements in key performance metrics. 

4. Analysis of ANTO's computational requirements and deployment considerations for practical 

implementation in existing intelligent transportation infrastructure. 

The remainder of this paper is organized as follows: Section 2 reviews related work in AI-driven traffic 

management. Section 3 details the ANTO architecture and methodological approach. Section 4 presents our 

experimental setup and performance evaluation. Section 5 discusses key findings and implications, while 

Section 6 outlines limitations and future research directions. Finally, Section 7 concludes the paper. 
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2. Related Work 

2.1 Traditional Traffic Control Methods 

Conventional traffic management systems have historically relied on fixed-time signal plans [8], actuated 

control [9], and coordinated control strategies like SCOOT [10] and SCATS [11]. These systems typically 

operate based on predefined rules and limited real-time adaptability. Webster's method [12] for optimizing 

cycle times and green splits represents one of the foundational approaches for fixed-time signal control but 

lacks the flexibility to dynamically respond to non-recurrent congestion patterns. 

2.2 Machine Learning for Traffic Prediction 

Accurate traffic prediction forms the foundation of proactive traffic management. Neural network approaches 

for traffic prediction have evolved from simple feedforward architectures [13] to more sophisticated models 

incorporating temporal dependencies. Huang et al. [14] demonstrated the effectiveness of Long Short-Term 

Memory (LSTM) networks for capturing temporal traffic patterns, while Zhang et al. [15] introduced 

convolutional neural networks (CNNs) to model spatial dependencies in traffic data. More recent approaches 

have combined these architectures into spatiotemporal models like ST-ResNet [16] and Graph Neural 

Networks (GNNs) [17], which better capture the network topology of transportation systems. 

2.3 Reinforcement Learning for Traffic Control 

Reinforcement learning (RL) has emerged as a promising approach for adaptive traffic signal control. 

Abdulhai et al. [18] were among the first to apply Q-learning to optimize signal timing. More recently, deep 

reinforcement learning approaches have shown significant promise. Li et al. [19] employed Deep Q-Networks 

(DQN) for traffic signal control, while Wei et al. [20] introduced a pressure-based reward function that 

improved scalability across network sizes. Multi-agent reinforcement learning (MARL) approaches by Chu 

et al. [21] and Chen et al. [22] have addressed coordination challenges in network-wide signal control. 

2.4 Integrated Traffic Management Systems 

Research on integrated approaches that simultaneously address multiple aspects of traffic management 

remains limited. Wang et al. [23] proposed a hierarchical framework combining signal control and route 

guidance but did not incorporate demand management strategies. Zhu et al. [24] introduced a multi-objective 

optimization approach for balancing mobility and emissions but lacked adaptive learning capabilities. The 

ANTO framework presented in this paper builds upon these foundations while addressing their limitations 

through a comprehensive, adaptive approach to traffic orchestration. 
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3. Methodology 

3.1 System Architecture 

The ANTO framework consists of four primary components, as illustrated in Figure 1: (1) a data integration 

layer that aggregates and preprocesses real-time traffic data from multiple sources; (2) a traffic state 

representation module that employs graph neural networks to model the transportation network; (3) a 

predictive analytics engine that forecasts short-term traffic evolution; and (4) a decision optimization module 

that determines optimal traffic management actions through reinforcement learning. 

 

3.2 Traffic Network Representation 

We model the transportation network as a directed graph G = (V, E), where V represents the set of nodes 

(intersections) and E represents the set of edges (road segments). Each edge e ∈  E is characterized by a feature 

vector xe that includes real-time measurements such as traffic flow, density, speed, and queue length. 

Additionally, we incorporate context features for each node, including time of day, day of week, weather 

conditions, and proximity to special event venues. 

To effectively capture the spatial dependencies in the traffic network, we employ a Graph Convolutional 

Network (GCN) defined as: 

H^(l+1) = σ(D^(-1/2) Â D^(-1/2) H^(l) W^(l)) 
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where H^(l) is the matrix of node features at layer l, Â is the adjacency matrix with self-connections, D is the 

diagonal degree matrix, W^(l) is the weight matrix for layer l, and σ is a non-linear activation function. 

3.3 Traffic Prediction Model 

For effective proactive congestion management, ANTO incorporates a traffic prediction component based on 

a hybrid architecture combining GCNs with temporal models. We implement a Graph Convolutional 

Recurrent Neural Network (GCRNN) that processes sequences of graph-structured traffic data to forecast 

future states. 

The prediction model is defined as: 

H_t = GCN(X_t) S_t = LSTM(H_t, S_(t-1)) Ŷ_(t+k) = f_pred(S_t) 

where X_t represents the input traffic features at time t, H_t is the output of the GCN layer, S_t is the hidden 

state of the LSTM at time t, and Ŷ_(t+k) is the predicted traffic state k time steps into the future. 

The model is trained to minimize the mean squared error between predicted and actual traffic states: 

L_pred = 1/n ∑(i=1 to n) ||Ŷ_(t+k)^(i) - Y_(t+k)^(i)||^2 

where n is the number of training samples. 

3.4 Multi-Objective Reinforcement Learning 

ANTO employs a multi-objective reinforcement learning approach to optimize traffic management actions. 

We formulate the problem as a Markov Decision Process (MDP) where: 

● The state s_t represents the current traffic conditions across the network. 

● The action a_t comprises a vector of control decisions, including signal timing adjustments, 

recommended route changes, and demand management strategies. 

● The reward function r(s_t, a_t) is a weighted combination of multiple objectives: 

r(s_t, a_t) = w_1 r_travel_time + w_2 r_emissions + w_3 r_fairness + w_4 r_stability 

where w_i are weights determined through sensitivity analysis to balance competing objectives. 

We implement the Proximal Policy Optimization (PPO) algorithm [25] for policy learning due to its sample 

efficiency and stability. The policy network π_θ(a_t|s_t) and value network V_φ(s_t) are parameterized using 

neural networks with parameters θ and φ, respectively. The PPO objective function is defined as: 

L^CLIP(θ) = Ê_t[min(r_t(θ)Â_t, clip(r_t(θ), 1-ε, 1+ε)Â_t)] 

where r_t(θ) = π_θ(a_t|s_t)/π_θ_old(a_t|s_t) is the probability ratio, Â_t is the advantage estimate, and ε is the 

clipping parameter that constrains policy updates. 
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3.5 Coordination Mechanism 

A key innovation in ANTO is its explicit coordination mechanism that ensures coherent traffic management 

across different control strategies. We implement a hierarchical control structure where network-level 

decisions inform local control actions while maintaining responsiveness to local conditions. The coordination 

is achieved through a message-passing mechanism between nodes in the traffic network, allowing for 

information exchange about current states and intended actions. 

4. Experimental Evaluation 

4.1 Datasets and Simulation Environment 

We evaluated ANTO using three datasets: 

1. Real-world traffic data from the PEMS Bay Area dataset [26], covering 6 months of 5-minute interval 

measurements from 325 sensors in the San Francisco Bay Area. 

2. New York City taxi trip data [27], providing origin-destination information for approximately 1.1 

billion taxi trips. 

3. Traffic signal and flow data from the metropolitan area of Manchester, UK [28], covering 79 signalized 

intersections and 208 road segments. 

For simulation experiments, we used the SUMO (Simulation of Urban MObility) platform [29] integrated 

with our custom Python-based implementation of ANTO. We constructed digital twins of selected network 

segments from each dataset to ensure realistic traffic dynamics. 

4.2 Baseline Methods 

We compared ANTO against the following baseline methods: 

1. Fixed-time control (FT): Pre-timed signal plans optimized for average daily traffic patterns. 

2. Actuated control (AC): Signal timing adjusted based on vehicle detection. 

3. Max-pressure control (MP) [30]: A state-of-the-art distributed adaptive signal control method. 

4. Independent DQN (IDQN) [19]: Deep Q-learning applied to individual intersections. 

5. Cooperative MARL (CMARL) [21]: A multi-agent approach with explicit coordination mechanisms. 

4.3 Performance Metrics 

We evaluated performance using multiple metrics to capture different aspects of traffic management 

effectiveness: 

1. Average travel time (ATT): Mean travel time across all vehicles in the network. 
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2. Total delay: Cumulative difference between actual travel time and free-flow travel time. 

3. Throughput: Number of vehicles successfully completing their trips within the evaluation period. 

4. Emissions: Estimated CO2 emissions based on the HBEFA model [31]. 

5. Fairness index (FI): Jain's fairness index applied to travel times across different origin-destination 

pairs. 

6. Responsiveness (R): Recovery time following incident-induced congestion. 

4.4 Results 

Table 1 presents the comparison of ANTO with baseline methods across different performance metrics, 

showing percentage improvements relative to the fixed-time control baseline. 

Table 1: Performance comparison of traffic management methods across metrics 

Meth

od 

ATT 

Reduction 

(%) 

Delay 

Reduction 

(%) 

Throughput 

Increase 

(%) 

Emissions 

Reduction 

(%) 

Fairness 

Index 

Responsivenes

s (min) 

FT 0.0 0.0 0.0 0.0 0.72 42.5 

AC 12.4 14.7 7.3 8.9 0.76 38.1 

MP 18.6 22.3 10.5 12.4 0.79 33.7 

IDQ

N 

20.2 25.1 12.8 15.6 0.81 27.4 

CMA

RL 

24.1 29.8 15.3 18.9 0.83 22.8 

ANT

O 

27.3 36.2 19.7 22.8 0.87 16.3 
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Figure 2 illustrates the performance of different methods under varying traffic demand levels, demonstrating 

ANTO's superior adaptability to changing conditions. 

 

The temporal evolution of traffic conditions under different control strategies is shown in Figure 3, 

highlighting ANTO's ability to prevent congestion formation and facilitate faster recovery. 
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4.5 Ablation Study 

To evaluate the contribution of individual components of ANTO, we conducted an ablation study by 

selectively disabling key features. Table 2 summarizes the results of this analysis, showing the percentage 

degradation in performance when specific components are removed. 

Table 2: Ablation study results showing performance degradation when components are removed 

Component 

Removed 

ATT 

Degradation (%) 

Emissions 

Degradation (%) 

Fairness 

Degradation (%) 

GCN representation 8.3 6.7 9.2 

Prediction module 12.6 10.8 7.5 

Coordination 

mechanism 

14.2 11.3 15.8 

Multi-objective 

reward 

9.5 13.6 16.2 

Route guidance 7.2 8.4 5.6 

Demand 

management 

5.8 9.3 4.9 

 

The results indicate that the coordination mechanism and prediction module contribute most significantly to 

ANTO's performance, highlighting the importance of proactive, coordinated traffic management. 

5. Discussion 

5.1 Performance Analysis 

ANTO consistently outperforms all baseline methods across the tested metrics and scenarios. The 27.3% 

reduction in average travel time and 36.2% reduction in delays compared to fixed-time control demonstrates 

the effectiveness of ANTO's adaptive approach. Particularly noteworthy is ANTO's superior performance 

under challenging conditions, such as high demand levels and incident scenarios, where it outperforms other 

adaptive methods by 8-15%. 
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The ablation study reveals that ANTO's coordination mechanism contributes most significantly to its 

performance, underscoring the importance of network-wide orchestration rather than isolated control actions. 

The prediction module's substantial impact highlights the value of proactive rather than reactive traffic 

management. 

5.2 Scalability and Transferability 

ANTO demonstrates good scalability across different network sizes. Through our experiments on network 

segments ranging from 15 to 79 intersections, we observed only a modest decrease in relative performance 

improvement (3-5%) as network size increased. This scalability is achieved through the graph-based 

representation that naturally accommodates varying network topologies. 

Regarding transferability, we conducted cross-dataset evaluations by training ANTO on one dataset and 

testing on others. While performance decreased by 12-18% compared to models trained specifically for the 

target environment, ANTO still outperformed traditional methods, suggesting reasonable transferability across 

different urban contexts. 

5.3 Practical Implementation Considerations 

The computational requirements of ANTO are significant but manageable for real-time operation. Our 

implementation requires approximately 2.3 GB of memory and achieves decision cycles of 1-3 seconds on 

standard server hardware, compatible with the update frequency requirements of urban traffic management 

systems. 

Integration with existing infrastructure represents a practical challenge. ANTO can be deployed incrementally, 

beginning with monitoring capabilities before gradually assuming control functions. The system's modular 

architecture facilitates integration with existing traffic management centers through standard communication 

protocols like NTCIP. 

6. Limitations and Future Work 

Despite ANTO's promising performance, several limitations remain. First, the approach relies heavily on the 

availability and quality of real-time traffic data, which may not be uniformly available across all urban areas. 

Future work should explore robust performance under partial observability and sensor failures. 

Second, while our evaluation included diverse traffic conditions, more extensive testing under extreme 

weather events, major disruptions, and special events would further validate the system's robustness. 
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Additionally, the current implementation does not fully account for emerging mobility services like ride-

sharing and autonomous vehicles, which will increasingly influence urban traffic patterns. 

Future research directions include: 

1. Extending ANTO to incorporate connected and autonomous vehicle capabilities, utilizing vehicle-to-

infrastructure (V2I) communication for enhanced traffic orchestration. 

2. Developing privacy-preserving mechanisms for utilizing individual trajectory data without 

compromising user privacy. 

3. Investigating transfer learning approaches to reduce the training data requirements when deploying 

ANTO in new environments. 

4. Expanding the framework to address multi-modal transportation, including public transit priority, 

bicycle infrastructure, and pedestrian movements. 

7. Conclusion 

This paper presented Adaptive Neural Traffic Orchestration (ANTO), a comprehensive AI-driven framework 

for dynamic traffic congestion mitigation. ANTO advances the state-of-the-art in intelligent transportation 

systems by integrating graph neural networks, recurrent neural networks, and multi-objective reinforcement 

learning to orchestrate multiple traffic management strategies simultaneously. 

Our extensive evaluation demonstrates that ANTO significantly outperforms existing methods across multiple 

performance metrics, with particularly strong results in high-demand scenarios and following traffic incidents. 

The system's ability to proactively predict and prevent congestion, rather than simply reacting to existing 

conditions, represents a paradigm shift in urban traffic management. 

The results establish ANTO as a promising approach for next-generation intelligent transportation systems, 

offering a path toward more efficient, sustainable, and resilient urban mobility. As cities continue to grow and 

transportation networks face increasing pressure, adaptive approaches like ANTO will become increasingly 

essential for maintaining urban mobility and quality of life. 
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