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Abstract
Traffic congestion remains a significant challenge in urban environments, imposing substantial economic,
environmental, and social costs. This research introduces Adaptive Neural Traffic Orchestration (ANTO), a
comprehensive Al-driven framework for dynamic congestion mitigation in urban transportation networks.
Leveraging deep reinforcement learning and recurrent neural network architectures, ANTO adaptively
responds to real-time traffic conditions by orchestrating signal timing, route guidance, and demand
management interventions. Our experimental evaluation on real-world traffic data from three metropolitan
areas demonstrates that ANTO reduces average travel times by 27.3% and congestion-related delays by 36.2%
compared to traditional fixed-time control systems. Implementation of ANTO in simulation environments
further shows a 22.8% decrease in emissions and significant improvements in network reliability metrics. This
paper presents the architectural components of ANTO, its algorithmic foundations, and experimental
validation that establishes its efficacy for next-generation intelligent transportation systems.
Keywords: Deep reinforcement learning, traffic optimization, neural networks, intelligent transportation
systems, congestion mitigation
1. Introduction
Urban traffic congestion represents one of the most pressing challenges in modern transportation
infrastructure, with significant economic costs estimated at $88 billion annually in the United States alone [1].
Traditional traffic management approaches often employ static control mechanisms that fail to adapt to
dynamic traffic patterns, resulting in suboptimal network performance, especially during unexpected
conditions or peak periods [2]. The emergence of artificial intelligence techniques, coupled with advancements
in sensing and communication technologies, has created new opportunities for developing adaptive traffic

management systems that can dynamically respond to changing traffic conditions [3].
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Recent research has demonstrated the promise of deep learning and reinforcement learning techniques for

traffic signal control [4], route optimization [5], and demand prediction [6]. However, most existing
approaches address only isolated aspects of traffic management rather than orchestrating a comprehensive
solution across multiple control dimensions. Furthermore, the generalization capabilities of these solutions
across different network topologies and traffic conditions remain limited [7].

This paper introduces Adaptive Neural Traffic Orchestration (ANTO), a novel framework that leverages
neural network architectures and reinforcement learning to dynamically optimize traffic flow across urban
networks. ANTO's key innovation lies in its ability to simultaneously coordinate multiple traffic management
strategies, including signal timing, route guidance, and demand management, while continuously adapting to
evolving traffic patterns. Unlike previous approaches that focus on isolated intersections or corridors, ANTO
implements a network-wide optimization strategy that considers the complex interactions between different
parts of the transportation system.

Our research makes the following contributions:

1. Development of a scalable neural architecture that integrates real-time traffic state representation with
predictive modeling capabilities for proactive congestion management.

2. Introduction of a multi-objective reinforcement learning algorithm that balances competing traffic
management goals, including travel time minimization, emissions reduction, and fairness in resource
allocation.

3. Empirical validation of ANTO using both simulation environments and real-world traffic data from
three metropolitan areas, demonstrating significant improvements in key performance metrics.

4. Analysis of ANTO's computational requirements and deployment considerations for practical
implementation in existing intelligent transportation infrastructure.

The remainder of this paper is organized as follows: Section 2 reviews related work in Al-driven traffic
management. Section 3 details the ANTO architecture and methodological approach. Section 4 presents our
experimental setup and performance evaluation. Section 5 discusses key findings and implications, while

Section 6 outlines limitations and future research directions. Finally, Section 7 concludes the paper.
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2. Related Work

2.1 Traditional Traffic Control Methods

Conventional traffic management systems have historically relied on fixed-time signal plans [8], actuated
control [9], and coordinated control strategies like SCOOT [10] and SCATS [11]. These systems typically
operate based on predefined rules and limited real-time adaptability. Webster's method [12] for optimizing
cycle times and green splits represents one of the foundational approaches for fixed-time signal control but
lacks the flexibility to dynamically respond to non-recurrent congestion patterns.

2.2 Machine Learning for Traffic Prediction

Accurate traffic prediction forms the foundation of proactive traffic management. Neural network approaches
for traffic prediction have evolved from simple feedforward architectures [13] to more sophisticated models
incorporating temporal dependencies. Huang et al. [14] demonstrated the effectiveness of Long Short-Term
Memory (LSTM) networks for capturing temporal traffic patterns, while Zhang et al. [15] introduced
convolutional neural networks (CNNSs) to model spatial dependencies in traffic data. More recent approaches
have combined these architectures into spatiotemporal models like ST-ResNet [16] and Graph Neural
Networks (GNNs) [17], which better capture the network topology of transportation systems.

2.3 Reinforcement Learning for Traffic Control

Reinforcement learning (RL) has emerged as a promising approach for adaptive traffic signal control.
Abdulhai et al. [18] were among the first to apply Q-learning to optimize signal timing. More recently, deep
reinforcement learning approaches have shown significant promise. Li et al. [19] employed Deep Q-Networks
(DQN) for traffic signal control, while Wei et al. [20] introduced a pressure-based reward function that
improved scalability across network sizes. Multi-agent reinforcement learning (MARL) approaches by Chu
et al. [21] and Chen et al. [22] have addressed coordination challenges in network-wide signal control.

2.4 Integrated Traffic Management Systems

Research on integrated approaches that simultaneously address multiple aspects of traffic management
remains limited. Wang et al. [23] proposed a hierarchical framework combining signal control and route
guidance but did not incorporate demand management strategies. Zhu et al. [24] introduced a multi-objective
optimization approach for balancing mobility and emissions but lacked adaptive learning capabilities. The
ANTO framework presented in this paper builds upon these foundations while addressing their limitations

through a comprehensive, adaptive approach to traffic orchestration.
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3. Methodology

3.1 System Architecture

The ANTO framework consists of four primary components, as illustrated in Figure 1: (1) a data integration
layer that aggregates and preprocesses real-time traffic data from multiple sources; (2) a traffic state
representation module that employs graph neural networks to model the transportation network; (3) a
predictive analytics engine that forecasts short-term traffic evolution; and (4) a decision optimization module

that determines optimal traffic management actions through reinforcement learning.
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3.2 Traffic Network Representation

We model the transportation network as a directed graph G = (V, E), where V represents the set of nodes
(intersections) and E represents the set of edges (road segments). Each edge e € E is characterized by a feature
vector xe that includes real-time measurements such as traffic flow, density, speed, and queue length.
Additionally, we incorporate context features for each node, including time of day, day of week, weather
conditions, and proximity to special event venues.

To effectively capture the spatial dependencies in the traffic network, we employ a Graph Convolutional
Network (GCN) defined as:

HA(+1) = 6(DA(-1/2) A DA(-1/2) HA(l) WA(I))
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where H/(I) is the matrix of node features at layer I, A is the adjacency matrix with self-connections, D is the

diagonal degree matrix, W”(1) is the weight matrix for layer 1, and o is a non-linear activation function.
3.3 Traffic Prediction Model
For effective proactive congestion management, ANTO incorporates a traffic prediction component based on
a hybrid architecture combining GCNs with temporal models. We implement a Graph Convolutional
Recurrent Neural Network (GCRNN) that processes sequences of graph-structured traffic data to forecast
future states.
The prediction model is defined as:
H t=GCN(X_t)S t=LSTM(H_t,S_(t-1)) Y _(t+k) =f pred(S 1)
where X_t represents the input traffic features at time t, H_t is the output of the GCN layer, S_t is the hidden
state of the LSTM at time t, and ¥_(t+k) is the predicted traffic state k time steps into the future.
The model is trained to minimize the mean squared error between predicted and actual traffic states:
L pred = 1/n Y (i=1 to n) ||[Y_(t+k) (i) - Y_(t+K) (D)2
where n is the number of training samples.
3.4 Multi-Objective Reinforcement Learning
ANTO employs a multi-objective reinforcement learning approach to optimize traffic management actions.
We formulate the problem as a Markov Decision Process (MDP) where:

e The state s_t represents the current traffic conditions across the network.

e The action a_t comprises a vector of control decisions, including signal timing adjustments,

recommended route changes, and demand management strategies.

e The reward function r(s_t, a_t) is a weighted combination of multiple objectives:
r(s_t,a t)=w_1r_travel time+w_2r_emissions + w_3 r_fairness + w_4 r_stability
where w_i are weights determined through sensitivity analysis to balance competing objectives.
We implement the Proximal Policy Optimization (PPO) algorithm [25] for policy learning due to its sample
efficiency and stability. The policy network & 6(a t|s_t) and value network V_o(s_t) are parameterized using
neural networks with parameters 6 and ¢, respectively. The PPO objective function is defined as:
LACLIP(0) = E_t[min(r_t(0)A_t, clip(r_t(0), 1-¢, I+e)A t)]
where r t(0)=mn_6(a_t|s_t)/m_6 old(a_t|s_t) is the probability ratio, A_t is the advantage estimate, and ¢ is the

clipping parameter that constrains policy updates.
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3.5 Coordination Mechanism

A key innovation in ANTO is its explicit coordination mechanism that ensures coherent traffic management
across different control strategies. We implement a hierarchical control structure where network-level
decisions inform local control actions while maintaining responsiveness to local conditions. The coordination
is achieved through a message-passing mechanism between nodes in the traffic network, allowing for
information exchange about current states and intended actions.
4. Experimental Evaluation
4.1 Datasets and Simulation Environment
We evaluated ANTO using three datasets:
1. Real-world traffic data from the PEMS Bay Area dataset [26], covering 6 months of 5-minute interval
measurements from 325 sensors in the San Francisco Bay Area.
2. New York City taxi trip data [27], providing origin-destination information for approximately 1.1
billion taxi trips.
3. Traffic signal and flow data from the metropolitan area of Manchester, UK [28], covering 79 signalized
intersections and 208 road segments.
For simulation experiments, we used the SUMO (Simulation of Urban MObility) platform [29] integrated
with our custom Python-based implementation of ANTO. We constructed digital twins of selected network
segments from each dataset to ensure realistic traffic dynamics.
4.2 Baseline Methods
We compared ANTO against the following baseline methods:
1. Fixed-time control (FT): Pre-timed signal plans optimized for average daily traffic patterns.
2. Actuated control (AC): Signal timing adjusted based on vehicle detection.
3. Max-pressure control (MP) [30]: A state-of-the-art distributed adaptive signal control method.
4. Independent DQN (IDQN) [19]: Deep Q-learning applied to individual intersections.
5. Cooperative MARL (CMARL) [21]: A multi-agent approach with explicit coordination mechanisms.
4.3 Performance Metrics
We evaluated performance using multiple metrics to capture different aspects of traffic management
effectiveness:

1. Average travel time (ATT): Mean travel time across all vehicles in the network.
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2. Total delay: Cumulative difference between actual travel time and free-flow travel time.

3. Throughput: Number of vehicles successfully completing their trips within the evaluation period.

4. Emissions: Estimated CO2 emissions based on the HBEFA model [31].

5. Fairness index (FI): Jain's fairness index applied to travel times across different origin-destination

pairs.

6. Responsiveness (R): Recovery time following incident-induced congestion.
4.4 Results
Table 1 presents the comparison of ANTO with baseline methods across different performance metrics,
showing percentage improvements relative to the fixed-time control baseline.

Table 1: Performance comparison of traffic management methods across metrics

Meth | ATT Delay Throughput | Emissions | Fairness | Responsivenes

od Reduction | Reduction | Increase Reduction | Index s (min)
(%) (%) (%) (%)

FT 0.0 0.0 0.0 0.0 0.72 425

AC |124 14.7 7.3 8.9 0.76 38.1

MP | 18.6 22.3 10.5 12.4 0.79 33.7

IDQ |20.2 25.1 12.8 15.6 0.81 27.4

N

CMA | 241 29.8 15.3 18.9 0.83 22.8

RL

ANT |27.3 36.2 19.7 22.8 0.87 16.3

O
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Figure 2 illustrates the performance of different methods under varying traffic demand levels, demonstrating

ANTO's superior adaptability to changing conditions.

Figure 2: Method Performance Under Varying Traffic Demand

2.54

2.0 A

1.5

Normalized Average Travel Time

1.0 1

0.6 0.7 0.8 0.9 1.0 11 12 13 14
Traffic Demand Level (Relative to Baseline)

The temporal evolution of traffic conditions under different control strategies is shown in Figure 3,
highlighting ANTO's ability to prevent congestion formation and facilitate faster recovery.

Figure 3: Temporal Evolution of Traffic Conditions
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4.5 Ablation Study

To evaluate the contribution of individual components of ANTO, we conducted an ablation study by
selectively disabling key features. Table 2 summarizes the results of this analysis, showing the percentage
degradation in performance when specific components are removed.

Table 2: Ablation study results showing performance degradation when components are removed

Component ATT Emissions Fairness
Removed Degradation (%) | Degradation (%0) Degradation (%)
GCN representation | 8.3 6.7 9.2
Prediction module 12.6 10.8 7.5
Coordination 14.2 11.3 15.8
mechanism

Multi-objective 9.5 13.6 16.2
reward

Route guidance 7.2 8.4 5.6
Demand 5.8 9.3 4.9
management

The results indicate that the coordination mechanism and prediction module contribute most significantly to
ANTO's performance, highlighting the importance of proactive, coordinated traffic management.

5. Discussion

5.1 Performance Analysis

ANTO consistently outperforms all baseline methods across the tested metrics and scenarios. The 27.3%
reduction in average travel time and 36.2% reduction in delays compared to fixed-time control demonstrates
the effectiveness of ANTO's adaptive approach. Particularly noteworthy is ANTO's superior performance
under challenging conditions, such as high demand levels and incident scenarios, where it outperforms other

adaptive methods by 8-15%.
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The ablation study reveals that ANTO's coordination mechanism contributes most significantly to its

performance, underscoring the importance of network-wide orchestration rather than isolated control actions.
The prediction module's substantial impact highlights the value of proactive rather than reactive traffic
management.

5.2 Scalability and Transferability

ANTO demonstrates good scalability across different network sizes. Through our experiments on network
segments ranging from 15 to 79 intersections, we observed only a modest decrease in relative performance
improvement (3-5%) as network size increased. This scalability is achieved through the graph-based
representation that naturally accommodates varying network topologies.

Regarding transferability, we conducted cross-dataset evaluations by training ANTO on one dataset and
testing on others. While performance decreased by 12-18% compared to models trained specifically for the
target environment, ANTO still outperformed traditional methods, suggesting reasonable transferability across
different urban contexts.

5.3 Practical Implementation Considerations

The computational requirements of ANTO are significant but manageable for real-time operation. Our
implementation requires approximately 2.3 GB of memory and achieves decision cycles of 1-3 seconds on
standard server hardware, compatible with the update frequency requirements of urban traffic management
systems.

Integration with existing infrastructure represents a practical challenge. ANTO can be deployed incrementally,
beginning with monitoring capabilities before gradually assuming control functions. The system's modular
architecture facilitates integration with existing traffic management centers through standard communication
protocols like NTCIP.

6. Limitations and Future Work

Despite ANTO's promising performance, several limitations remain. First, the approach relies heavily on the
availability and quality of real-time traffic data, which may not be uniformly available across all urban areas.
Future work should explore robust performance under partial observability and sensor failures.

Second, while our evaluation included diverse traffic conditions, more extensive testing under extreme

weather events, major disruptions, and special events would further validate the system's robustness.
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Additionally, the current implementation does not fully account for emerging mobility services like ride-

sharing and autonomous vehicles, which will increasingly influence urban traffic patterns.
Future research directions include:
1. Extending ANTO to incorporate connected and autonomous vehicle capabilities, utilizing vehicle-to-
infrastructure (V21) communication for enhanced traffic orchestration.
2. Developing privacy-preserving mechanisms for utilizing individual trajectory data without
compromising user privacy.
3. Investigating transfer learning approaches to reduce the training data requirements when deploying
ANTO in new environments.
4. Expanding the framework to address multi-modal transportation, including public transit priority,
bicycle infrastructure, and pedestrian movements.
7. Conclusion
This paper presented Adaptive Neural Traffic Orchestration (ANTO), a comprehensive Al-driven framework
for dynamic traffic congestion mitigation. ANTO advances the state-of-the-art in intelligent transportation
systems by integrating graph neural networks, recurrent neural networks, and multi-objective reinforcement
learning to orchestrate multiple traffic management strategies simultaneously.
Our extensive evaluation demonstrates that ANTO significantly outperforms existing methods across multiple
performance metrics, with particularly strong results in high-demand scenarios and following traffic incidents.
The system’s ability to proactively predict and prevent congestion, rather than simply reacting to existing
conditions, represents a paradigm shift in urban traffic management.
The results establish ANTO as a promising approach for next-generation intelligent transportation systems,
offering a path toward more efficient, sustainable, and resilient urban mobility. As cities continue to grow and
transportation networks face increasing pressure, adaptive approaches like ANTO will become increasingly

essential for maintaining urban mobility and quality of life.
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