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I. INTRODUCTION 

  Zadeh [20] who introduced the fuzzy set in 1965 which was characterized by a membership degree of range  

[0, 1]. Intuitionistic Fuzzy set which was an extension of Fuzzy set given by Atanassov [1] in 1986. Intuitionistic Fuzzy set captured 

an association degree as well as non-association degree becomes the generalization of fuzzy set. The Characteristic of Intuitionistic 

fuzzy set is to assigns each element a Membership degree and a non-membership degree. The Intuitionistic fuzzy set widely used 

in application’s view point in many fields, such as decision making [18, 19], medical diagnosis [9, 14] and cluster analysis[15, 

16].Fuzzy Relation are most important notion of fuzzy set theory and fuzzy systems theory. Intuitionistic fuzzy relations were give 

many results by [3][4][10]. Xu [18] defined some new Intuitionistic preference relation and studied their properties.  

            The Intuitionistic fuzzy set to picture fuzzy sets were generalized by Cuong[6,7]. He proposed the notion for picture 

fuzzy relations and studied their operations and properties. Picture Fuzzy set give the three degrees of an element called degree of 

positive membership, degree of Neutral membership and degree of negative membership respectively. Picture fuzzy sets based 

models may be adequate in situations when we face human opinions involving more answers of types: yes, abstain, no, refusal.  

Bosc and Pivert[2] said that “Bipolarity refers to the propensity of the human mind to reason and make decisions on the basis of 

positive and negative effects. There are two information, first is the positive information that is possible, satisfactory, desired and 

being acceptable. On the other hand, negative information states that impossible, rejected or forbidden. Lee [11, 12] proposed the 

concept of bipolar fuzzy set which is a generalization of the fuzzy sets. However aggregation operator is commonly used in multi-

attribute decision making problems.  

  In this paper, we introduce new operations on bipolar picture fuzzy and their relations. Also we develop, Bipolar 

Picture Fuzzy Geometric operators and discuss their properties. We further propose Bipolar Picture Fuzzy Multiple Attribute Decision 

making problems. A numerical example for the method is given to demonstrate the effectiveness and application of our proposed 

method. 

II. PRELIMINARIES: 

Definition 2.1: [20] Let X be the universe of discourse, then a fuzzy set is defined as: A= {<x, μA(x)>:x∈X} which is characterized 

by a membership function μA: X→ [0, 1], where μA denotes the degree of membership of the element x to the set A.  

 

Definition 2.2:[1] An Intuitionistic Fuzzy Set in X is given by A = {<x, μA(x), γA(x)>:x∈X} which is characterized by a membership 

function A: X→ [0,1] and a non-membership function A: X → [0,1], with the condition 0≤ μA(x)+ γA(x) ≤ 1,∀x∈X where the 

numbers  μA(x) and γA(x) represent the degree of membership and the degree of non-membership of the element x to the set A, 

respectively. 

 

Definition 2.3: [17] Let α = (μα, γα) and β = (μβ, γβ) be two Intuitionistic fuzzy numbers, then 

(1) α . β = (μα μβ , γα γβ - γα γβ) 

(2) αλ
 = (μα

 , 1-(1- γα)λ), λ > 0. 

Definition 2.4: [8] A Picture Fuzzy set (PFS) A on a Universe X is an object in the form of  

A={(x, μA(x), η
A

(x), γA(x):x∈X)} where μ
A

(x),η
A

(x),γ
A

(x) ∈ [0,1].Here μ
A

(x)∈[0,1] called  positive membership, η
A

(x) 

∈[0,1]  called degree of neutral membership and γ
A

(x) ∈[0,1] called degree of negative membership. These memberships satisfying 

the condition ∀x ∈ X,  

μA(x) +  η
A

(x) +  γA(x)  ≤ 1. Then, for x ∈ X, ρ A (x)= 1- μA(x) - η
A

(x) - γA(x) could be called the degree of refusal membership 

of  in A. 

 

 

Definition 2.5: [8] For every two PFSs A and B, defined some operations as following. 
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(1) A ⊆ B iff μA(x) ≤ μB(x) , ηA(x) ≥ ηB(x) and γA(x ) ≥ γB(x);∀x∈X; 

(2) A = B iff A⊆ B and B ⊆ A 

(3) AUB= {(x, max (μA(x), μB(x)), min (ηA(x), ηB(x)), and min (γA (x), γB (x)):x∈X} 

(4) A∩B= {(x, min (μA(x), μB(x)), max (ηA(x), ηB(x)), and max (γA (x), γB (x)):x∈X} 

(5) Ac= {(x, γA(x), ηA(x), μA(x)):x∈X} 

 

Several properties of these operations were also discussed: 

(1) If A ⊆ B and B⊆ C, then A ⊆ C 

(2) A  = A 

(3) Operations U and ∩ are commutative, associative and distributive. 

(4) Operations ∩, co and U satisfy the De Morgan law. 

 

Definition 2.6: [8] A picture fuzzy relation R is a picture fuzzy subset of XxY, i.e. R is given by 

𝑅 = {((x, y), μ
R

 (x, y), η
R

 (x, y), γ
R

 (x, y)): x ∈ 𝑋, y ∈ 𝑌} where  (x, y) ∈ 𝑋 × 𝑌 and also  

μ
R

, η
R

,γ
R

 : 𝑋 × 𝑌 → [0,1] and satisfying the condition (x, y) ∈ 𝑋 × 𝑌, μ
R

(x) + η
R

(x) + γ
R

(x) ≤ 1. We will denote with PFS 

(𝑋 × 𝑌) the set of all Picture fuzzy subsets in 𝑋 × 𝑌. 

 

Definition 2.7: [8] A binary Picture fuzzy relation between 𝑋 and 𝑌, we can define R-1 between 𝑌 and 𝑋 by means of  

μ 1R
 (𝑦, x) = μ

R
 (𝑥, 𝑦), η 1R

 (𝑦,) = η
R

 (𝑥,), γ 1R
 (𝑦,𝑥)= γ

R
 (𝑥,𝑦), γ


1R

 (𝑦,𝑥)= γ


R
 (𝑥,𝑦) , ∀ (𝑥, 𝑦) ∈ 𝑋×𝑌  

to which we call inverse relation of R. 

 

Definition 2.8: [5] Let α = {(x, μα(x), ηα(x), γα(x):x∈X} and β = {(x, μβ(x), ηβ(x), γβ(x): x∈X} be the two picture fuzzy numbers, 

then 

a. α . β = (μα+ ηα)( μβ + ηβ) - ηα ηβ , ηα ηβ , 1-(1- γα)(1- γβ) 

b. αλ  =   (μα+ ηα)λ( μβ + ηβ)λ - ηα
λ
 ηβ

λ
 , ηα

ληβ
λ
 , 1-(1- γα)λ(1- γβ)λ , λ>0. 

 

Definition 2.9: [5] Let α = {(x, μα(x), ηα(x), γα(x):x∈X} be the picture fuzzy numbers, then a score function S can be defined as S 

(α) = μα  - γα  and the accuracy function H is given by  

H(α) =μα + ηα + γα  where S(α) ∈ [-1,1] and H(α) ∈ [0, 1]. Then, for two picture fuzzy numbers α and β  

(i) if S(α) > S(β), then α is superior to β, denoted by α ≻ β. 

(ii) if S(α) = S(β), then 

(1) H(α) = H(β), implies that α is equivalent to β, denoted by α ~β. 

(2) H(α) > H(β), implies that α is superior to β, denoted by α ≻ β. 

 

Definition 2.10: [13] Let X be a non-empty set. Then, a bipolar-valued fuzzy set is denoted by ABF, defined by   ABF = {(x, μ


A
(x), 

μ


A
(x): x ∈X)} where μ



A
: X→ [0, 1] and μ



A
: X→ [0,-1].The positive membership degree μ



A
(x) denotes the satisfaction degree 

of an element x to the property corresponding to ABF and the negative membership degree μ


A
(x) denotes the satisfaction degree of 

x to some implicit counter property of ABF. 

III.   BIPOLAR PICTURE FUZZY SET (BPFS) 

Definition 3.1: A bipolar Picture Fuzzy set (BPFS) A on a Universe X is an object in the form of  

A={(x, μ


A
(x),η



A
(x),γ



A
(x), μ



A
(x),η



A
(x),γ



A
(x)):x∈X}  

where μ


A
(x),η



A
(x),γ



A
(x)∈[0,1] and μ



A
(x),η



A
(x),γ



A
(x) ∈[-1,0].Here μ



A
(x),μ



A
(x) are positive and negative of degree of 

positive membership, η


A
(x),η



A
(x) are positive and negative of degree of neutral membership. γ



A
(x),γ



A
(x) are positive and 

negative of degree of negative membership. 

Besides, μ


A
, μ



A
 , η



A
, η



A
, γ



A
,γ



A  
 satisfying the condition  x ∈ 𝑋, μ



A
(x) + η



A
(x) + γ



A
(x) ≤ 1 and  

μ 


A
(x) + η



A
(x) + γ



A
(x) ≥ -1. Then for every x∈X, 



A (x) =1- μ


A  
- η



A  
- γ



A
  and 



A (x) =1- μ


A
 - η



A
 - γ



A
 called refusal 

membership of x in A. 

 

Definition 3.2: Let A and B be two bipolar picture fuzzy sets in X defined as 

A={(x, μ


A
(x),η



A
(x),γ



A
(x), μ



A
(x),η



A
(x),γ



A
(x)):x∈X} and B={(x, μ



B
(x),η



B
(x),γ



B
(x), μ



B
(x), 

η


B
(x), γ



B
(x)):x∈X}. Then the following operators are defined as 

 

(i) Complement 

       A= {< (1- μ


A
(x)), (-1- μ



A
(x)-), (1- η



A
(x)), (-1- η



A
(x)), (1- γ



A
(x)), (-1- γ



A
(x))>} 

(ii) Union of two BPFS 

A U B = {(max (μ


A
(x), μ



B
 (x)), min (η



A
(x), η



B
(x)), min (γ



A
(x), γ



B
(x), 

max (μ


A
(x),μ



B
(x)),min (η



A
(x),η



B
(x)), min (γ



A
(x),γ



B
(x)))} 
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(iii)  Intersection of two BPFS  

A ∩ B = {(min (μ


A
(x), μ



B
 (x)), max (η



A
(x), η



B
(x)), max (γ



A
(x), γ



B
(x)), 

 min (μ


A
(x), μ



B
(x)), max (η



A
(x), η



B
(x)), max (γ



A
(x), γ



B
(x)))} 

 

(iv) A=B iff 

μ


A
(x) = μ



B
 (x) , η



A
(x) = η



B
(x) , γ



A
(x) = γ



B
(x) ,  

μ


A
(x) = μ



B
(x) , η



A
(x) = η



B
(x) ,  γ



A
(x) = γ



B
(x) 

 

(v) A ⊆ B  iff 

μ


A
(x) ≤ μ



B
(x) , η



A
(x) ≥ η



B
(x) , γ



A
(x) ≥ γ



B
(x) ,  

μ


A
(x) ≤ μ



B
(x) , η



A
(x) ≥ η



B
(x) , γ



A
(x) ≥ γ



B
(x) 

 

Definition 3.3: (i) A Bipolar Picture fuzzy set relation is defined as a Bipolar Picture fuzzy subset of  𝑋 × 𝑌 having the form  

𝑅 ={((x, y),μ


R
 (x, y), μ



R
 (x, y), η



R
 (x, y), η



R
 (x, y), γ



R
 (x, y), γ



R
 (x, y)): x ∈ 𝑋, y ∈  }  

where   (x, y)∈ 𝑋 × 𝑌 and also μ


R
,η



R
,γ



R
 : 𝑋 × 𝑌 → [0,1] ,μ



R
 ,η



R
, γ



R
: 𝑋 × 𝑌 → [-1,0]. We will denote with BPFS (𝑋 × 𝑌) 

the set of all bipolar Picture fuzzy subsets in 𝑋 × 𝑌. 

          (ii) A binary bipolar Picture fuzzy relation between 𝑋 and 𝑌, we can define R-1 between 𝑌 and 𝑋 by means of  

μ

1R

 (𝑦, x) = μ


R
 (𝑥, 𝑦), μ


1R

 (𝑦, 𝑥) = μ


R
 (𝑥, 𝑦), η


1R

 (𝑦,𝑥) = η


R
 (𝑥,𝑦), η


1R

 (𝑦,𝑥)= η
 


R
 (𝑥,𝑦),  

γ

1R

 (𝑦,𝑥)= γ


R
 (𝑥,𝑦), γ


1R

 (𝑦,𝑥)= γ


R
 (𝑥,𝑦) ∀ (𝑥, 𝑦) ∈ 𝑋×𝑌 to which we call inverse relation of R. 

        (iii)  Let R and P be two bipolar picture fuzzy relations between X and Y, For every (𝑥, 𝑦) ∈ X×Y .We can define,  

a. R≤ P ⇔{ (x, y),


R (x, y) ≤ 


P  (x, y) , 


R (x, y) ≤


P ( (x, y)  , 


R (x, y) ≥ 


P  (x, y) ,  



R (x, y) ≥ 


P  (x, y),


R  (x, y) ≥


P  (x, y), 


R (x, y) ≥


P  (x, y)} 

b. Rc = {(x, y), (1- 


R (x, y)), (-1- 


R (x, y)), (1- 


R (x, y)), (-1- 


R (x, y)), 

(1- 


R  (x, y)),(-1- 


R  (x, y))} 

c. R P ={(x, y), μ


R
 (x, y) μ



P
 (x, y), μ



R
 (x, y) μ



P
 (x, y), η



R
 (x, y)  η



P
(x, y),  

                         η


R
 (x, y)  η



P
(x, y), γ



R
 (x, y) γ



P
 (x, y) , γ



R
 (x, y) γ



P
 (x, y)} 

      d. R P = {(x, y), μ


R
 (x, y) μ



P
 (x, y) , μ



R
 (x, y) μ



P
 (x, y), η



R
 (x, y) η



P
 (x, y) ,  

                                   η


R
 (x, y) η



P
(x, y) , γ



R
(x, y) γ



P
 (x, y) , γ



R
 (x, y) γ



P
 (x, y)} 

 

Theorem 3.4: Let R, P, Q be three elements of bipolar picture fuzzy relations (X×Y)  

(i)  R ≤ P ⇒ R-1 ≤ P-1    (ii) (R P)-1=R-1 P-1   (iii) (R P)-1=R-1 P-1   (iv) (R-1)-1 = R 

(v)    R (P Q) =  (R P) (R Q)  and  R (P Q) =  (R P) (R Q) 

(vi) R P ≥ R, R P ≥ P, R P ≤ R, R P ≤ P 

(vii) If R ≥ P and R ≥ Q; then R ≥ (P Q) (viii) If R ≤ P and R ≤ Q; then R ≤ (P Q) 

Proof: 

 (i) If R ≤ P, then for every (x, y) ∈ X x Y 

μ
 


1R

(𝑦,𝑥)= μ
 


R
(x, y) ≤ μ

 


P
(x, y) = μ

 


1P

(y,x)    μ
 


1R

 (y, x)= μ
 


R
 (x, y )≤ μ

 


P
 (x, y) = μ 


1P

 (y,x) 

η
 


1R

 (𝑦,𝑥)= η
 


R
 (x,y) ≥ η

 


P
 (x,y) = η

 


1P

 (y,x)   η
 


1R

 (y,x)= η
 


R
 (x,y) ≥ η

 


P
 (x,y) = η

 


1P

 (y,x) 

γ
 


1R

 (𝑦,𝑥)= γ
 


R
 (x,y) ≥ γ

 


P
 (x,y) = γ

 


1P

 (y,x)    γ
 


1R

 (y,x)= γ
 


R
 (x,y) ≤ γ

 


P
 (x,y) = γ

 


1P

 (y,x) 

Hence R-1 ≤ P-1. 

(ii) (R P)-1=R-1 P-1 

μ
 



 1)( PR
 (y,x)= μ

 



 )( PR
 (x,y)= μ

 


R
 (x,y)   μ

 


P
 (x,y) = μ

 


1R

 (y,x)   μ
 


1P

 (y,x) = μ
 



  11 PR
(y,x) 

μ
 



 1)( PR
 (y,x)= μ

 



 )( PR
 (x,y)= μ

 


R
 (x,y)   μ

 


P
 (x,y) = μ

 


1R

 (y,x)   μ
 


1P

 (y,x) = μ
 



  11 PR
(y,x) 

The proof is similar for η
 



 1)( PR
 (y,x) = η

 



  11 PR
(y,x) , η

 



 1)( PR
 (y,x)= η

 



  11 PR
(y,x) and  

γ
 



 1)( PR
 (y,x) = γ

 



  11 PR
(y,x) , γ

 



 1)( PR
 (y,x)= γ

 



  11 PR
(y,x) . 

(iii) (R P)-1=R-1 P-1   : The proof is similar to (ii). 

(iv) (R-1)-1 = R: The proof follows from the definition. 

       (v) R  (P Q) = (R P)  (R Q) and R  (P Q) = (R P)  (R Q) 

Proof:   
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μ
 



 )(( QPR  (x,y) = μ
 


R
 (x,y)  { μ

 


P
 (x,y)   μ

 



Q  (x,y)}= μ
 


R
 (x,y)   μ

 


P
 (x,y)   μ

 


R
 (x,y)   μ

 



Q  (x,y) = μ
 


PR
 
(x,y) 

  μ
 



QR
 
(x,y) = μ

 



 )()( QRPR  (x,y) 

Similarly for  μ
 



 )(( QPR  (x,y) , η
 



 )(( QPR  (x,y), η
 



 )(( QPR  (x,y), γ
 



 )(( QPR  (x,y), γ
 



 )(( QPR  (x,y). 

Hence R  (P Q) = (R P)  (R Q) . 

The proof is analogous to the above one, in the case of  R  (P Q) = (R P)  (R Q). 

(vi) R P ≥ R, R P ≥ P, R P ≤ R, R P ≤ P: The proof is obvious. 

       (vii) If R ≥ P and R ≥ Q; then R ≥ (P Q)   

Proof: If R ≥ P and R ≥ Q , μ
 


R
 (x,y) ≥ μ

 


P
 (x,y) , μ

 


R
 (x,y) ≥ μ

 


P
 (x,y) , η

 


R
 (x,y)≤ η

 


P
 (x,y) , 

 η
 


R
 (x,y) ≤ η

 


P
 (x,y) , γ

 


R
 (x,y) ≤ γ

 


P
 (x,y) , γ

 


R
 (x,y) ≤ γ

 


P
 (x,y), μ

 


R
 (x,y) ≥ μ

 



Q  (x,y) ,  

μ
 


R
 (x,y) ≥ μ

 



Q  (x,y) , η
 


R
 (x,y) ≤ η

 



Q  (x,y) , η
 


R
 (x,y) ≤ η

 



Q  (x,y)  , γ
 


R
 (x,y) ≤ γ

 



Q  (x,y) ,  

γ
 


R
 (x,y) ≤ γ

 



Q  (x,y)            

μ
 


R
 (x,y) ≥ μ

 


P
 (x,y)   μ

 



Q  (x,y) ⇒ μ
 


R
 (x,y) ≥ μ

 



QP  (x,y) ⇒ R ≥ (P Q) ,similarly for μ
 


R
 (x,y) ≥  μ

 



QP  (x,y), η
 


R
 (x,y) 

≤ η
 



QP  (x,y) , η
 


R
 (x,y) ≤ η

 



QP  (x,y) , γ
 


R
 (x,y)≤ γ

 



QP  (x,y) ,  

γ
 


R
 (x,y)≤ γ

 



QP  (x,y).Therefore       R ≥ (P Q). 

(viii) If R ≤ P and R ≤ Q; then R ≤ (P Q): The proof is similar as (vii). 

 

Definition 3.5: Let α = {(x, μ


 (x),η


 (x),γ


 (x), μ


 (x),η


 (x),γ


 (x)):x∈X} and β = {(x, μ


 (x), 

η


 (x), γ


 (x), μ


 (x), η


 (x), γ


 (x)):x∈X} be the two bipolar picture fuzzy numbers, then 

a. α. β = (μ


 + η


 )( μ


 +η


 )- η


  η


  , η


  η


  , 1-(1- γ


 )(1- γ


 ) ,  

        -(((-μ


 )+(-η


 ))(( -μ


 )+(-η


 )) – (-η


 )(-η


 )) , -((-η


 )(-η


 )) , 1-(1- γ


 )(1- γ


 ) 

      b. αλ  =   (μ


 + η


 )λ – (η


 )λ , (η


 )λ , 1-(1- γ


 )λ , -(((-μ


 )+(-η


 ))λ-(-η


 )λ , -(-η


 )λ , 

                        1-(1- γ


 )λ  (λ>0) 

Definition 3.6: Let α = {(x, μ


 (x),η


 (x),γ


 (x), μ


 (x),η


 (x),γ


 (x)):x∈X} be bipolar picture fuzzy  numbers , then the  

Score function S (α) = (μ


 +1- η


 +1-γ


 +1+ μ


 - η


 -γ


 )/6 

Accuracy function H (α) = μ


 - γ


 + μ


 - γ


  

(i) If S (α) > S (β), then α is superior to β, α > β. 

(ii) If S (α) = S (β), then (a). H (α) = H (β) implies that α is equivalent to β, α ~ β. 

                                 (b). H (α) > H (β) implies that α is superior to β, α > β. 

 

IV.  BIPOLAR PICTURE FUZZY GEOMETRIC OPERATOR: 

Definition 4.1: Let Aj (j=1, 2… n) is the collect ion of BPFNS, we define bipolar picture fuzzy weighted geometric operator 

(BPFWG), 

   BPFWGω  (A1,A2,….An) = 


n

j

A
1

j

j


 where ω=(ω1,ω2,….., ωn)T be the weighted vector of Aj (j=1,2,…,n) and ωj >0,



n

j

j

1

 =1. 

 

Theorem 4.2: Let Aj (j=1, 2… n) is the collect ion of BPFNS, then their aggregated value by the BPFWG operator is also a BPFNS, 

BPFWGω (A1, A2… An) = (


n

i 1

(μ


i + η


i ) i
- 



n

i 1

(η


i ) i
 , 



n

i 1

(η


i ) i
 , 1-



n

i 1

(1- γ


i ) i
,  

- (


n

i 1

((-μ


i ) + (- η


i )) i
- 



n

i 1

(-η


i ) i
) , -



n

i 1

(-η


i ) i
 ,  1-



n

i 1

(1- γ


i ) i
) 

Proof: We prove that the theorem, by using mathematical induction on n, 

If for n=2, we get 

A 1

1


= ((μ



1
+ η



1
) 1 - (η



1
) 1

, (η


1
) 1

, 1- (1- γ


1
) 1

,-(((-μ


1
) + (- η



1
)) 1 - (-η



1
) 1 ) , - (-η



1
) 1 ,  

1-(1- γ


1
) 1 ) 

A 2

2


= ((μ



2
+ η



2
) 2

- (η


2
) 1

, (η


2
) 2

, 1- (1- γ


2
) 2

,-(((-μ


2
) + (- η



2
)) 2

- (-η


2
) 1 ) , - (-η



2
) 2

,  

1-(1- γ


2
) 2

) 

Then,  

A 1

1


. A 2

2


 = ((μ



1
+ η



1
) 1 (μ



2
+ η



2
) 2

- (η


1
) 1 (η



2
) 1

, (η


1
) 1 (η



2
) 1

, 1- (1- γ


1
) 1 (1- γ



2
) 2

,  
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                   - (((-μ


1
) + (- η



1
)) 1 ((-μ



2
) + (- η



2
)) 2

-(-η


1
) 1 (-η



2
) 2

),(-η


1
) 1 (-η



2
) 2

, 1-(1- γ


1
) 1 (1- γ



2
) 2

) 

Thus the theorem holds. If for n= k then, 

BPFWGω (A1,…Ak) = (


k

i 1

(μ


i + η


i ) i
- 



k

i 1

(η


i ) i
 , 



k

i 1

(η


i ) i
 , 1-



k

i 1

(1- γ


i ) i
,  

- (


k

i 1

((-μ


i ) + (- η


i )) i
- 



k

i 1

(-η


i ) i
) , -



k

i 1

(-η


i ) i
 ,  1-



k

i 1

(1- γ


i ) i
) 

When n= k+1, we have  






1

1

k

i

A i

i



= 


k

i

A
1

i

i


A 1

1



k

k



 

= (


k

i 1

(μ


i + η


i ) i
- 



k

i 1

(η


i ) i
 , 



k

i 1

(η


i ) i
 , 1-



k

i 1

(1- γ


i ) i
, 
 

- (


k

i 1

((-μ


i ) + (- η


i )) i
- 



k

i 1

(-η


i ) i
) , -



k

i 1

(-η


i ) i
 ,  1-



k

i 1

(1- γ


i ) i
) . 

 (μ


1k + η


1k ) 1k - (η


1k ) 1k  , (η


1k ) 1k  , 1- (1- γ


1k ) 1k , - (((-μ


1k ) + (- η


1k )) 1k - (-η


1k ) 1k ) ,  

- (-η


1k ) 1k  ,  1- (1- γ


1k ) 1k ) 

= (




1

1

k

i

(μ


i + η


i ) i
- 





1

1

k

i

(η


i ) i
 , 





1

1

k

i

(η


i ) i
 , 1-





1

1

k

i

(1- γ


i ) i
, 
 

- (




1

1

k

i

((-μ


i ) + (- η


i )) i
- 





1

1

k

i

(-η


i ) i
) , -





1

1

k

i
(-η



i ) i
 ,  1-





1

1

k

i

(1- γ


i ) i
)  

(i.e) The theorem holds for n= k+1, by the principle of mathematical induction, the theorem holds for all n. 

(


n

i 1

(μ


i + η


i ) i
- 



n

i 1

(η


i ) i
 , 



n

i 1

(η


i ) i
 , 1-



n

i 1

(1- γ


i ) i
,  

- (


n

i 1

((-μ


i ) + (- η


i )) i
- 



n

i 1

(-η


i ) i
) , -



n

i 1

(-η


i ) i
 ,  1-



n

i 1

(1- γ


i ) i
) ∈ [0,1]x[0,-1]. 

  The Result of BPFWGω (A1, A2,.. An) is also a BPFN. 

When we need to weight the ordered positions of the bipolar picture fuzzy arguments instead of weighting the argument, BPWG 

can be generalized to BPFOWG 

 

Definition 4.3: Let Aj (j=1, 2… n) is the collect ion of BPFNS, we define bipolar picture fuzzy ordered weighted geometric operator 

(BPFOWG), 

BPFOWGω  (A1,A2,….An) = 


n

j

A
1

 
j

j



  where ω=(ω1,ω2,…..,ωn)T be the weighted vector of Aj     (j=1,2,…,n) and ωj >0, 




n

j

j

1

 =1. 

 

Theorem 4.4: Let Aj (j=1, 2… n) is the collect ion of BPFNS, then their aggregated value by the BPFWG operator is also a BPFNS, 

BPFOWGω (A1, A2… An) =  

( 


n

i 1

(μ  


i + η  


i ) i
- 



n

i 1

(η  


i ) i
 , 



n

i 1

(η  


i ) i
 , 1-



n

i 1

(1- γ  


i ) i
,  

- (


n

i 1

((- μ  


i ) + (- η  


i )) i
- 



n

i 1

(- η  


i ) i
), - 



n

i 1

(- η  


i ) i
 , 1-



n

i 1

(1- γ  


i ) i
) 

The proof is similar to the above theorem 4.2. 

 

Definition 4.5: Let Aj (j=1, 2… n) is the collect ion of BPFNS, we define bipolar picture fuzzy hybrid weighted geometric operator 

(BPFHWG), 

   BPFHWGω  (A1,A2,….An) = 


n

j

A
1

~
 
j

j



  where ω=(ω1,ω2,…..,ωn)T be the weighted vector of Aj (j=1,2,…,n) and ωj >0, 
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


n

j

j

1

 =1 and  jA  is the jth largest element of the bipolar picture fuzzy arguments ( A
~

j = 
jn

jA


), ωj is the weighting vector of 

BPF argument Aj  with ωj > 0, 


n

j

j

1

 =1 and n is the balancing coefficient. 

 

Theorem 4.6: Let Aj (j=1, 2… n) is the collect ion of BPFNS, then their aggregated using value by the BPFWG operator is also a 

BPFNS, 

BPFHWGω (A1,A2,….An) =  

(


n

i 1

(~  


i + ~  


i ) i
- 



n

i 1

(~  


i ) i
 , 



n

i 1

(~  


i ) i
 , 1-



n

i 1

(1- ~  


i ) i
,  

- (


n

i 1

((-~  


i ) + (-~  


i )) i
- 



n

i 1

(-~  


i ) i
), - 



n

i 1

(-~  


i ) i
 , 1-



n

i 1

(1-~  


i ) i
) 

The proof is similar to the above theorem 4.2. 

 

IV. MULTIPLE ATTRIBUTE DECISION MAKING WITH BIPOLAR PICTURE FUZZY INFORMATION: 

To represent the MADM problems for evaluation of alternatives the following notations are used. Let set of m alternatives 

be F = {F1, F2… Fm} and G = {G1, G2….Gn} be a set of n attributes. Values for the alternative Fi under the attribute Gj with 

anonymity were provided to the decision makers, considering these values as a bipolar picture fuzzy element Aij. 

Suppose the bipolar picture fuzzy decision matrix is the decision matrix A = (Aij) mxn where Aij (i = 1, 2… m; j = 1, 2…n) are in the 

form of BPFNs. Evaluation of alternatives with bipolar picture fuzzy information, we apply the BPFWG operator to the MADM 

problems. 

 

STEP 1: Utilize the decision information given in matrix A, and the BPFWG operator 

iA
~

= BPFWGω (A1,A2,…,An) = ( 


n

i 1

(μ


i + η


i ) i
- 



n

i 1

(η


i ) i
 , 



n

i 1

(η


i ) i
, 1-



n

i 1

(1- γ


i ) i
, -(



n

i 1

((-μ


i )+(- η


i ))

i
- 



n

i 1

(-η


i ) i
) , -



n

i 1

(-η


i ) i
 ,  1-



n

i 1

(1- γ


i ) i
)  to derive the overall preference values iA

~
 (i = 1, 2 …, m) of the 

alternative Fi. 

STEP 2: Calculate the scores S ( iA
~

) (i = 1, 2…m) of the bipolar picture fuzzy values iA
~

 . 

 

STEP 3: Rank the alternatives Fi (i = 1, 2… m) in with the values of S ( iA
~

) (i =1, 2… m) and choose the best one(s). 

 

4.1    APPLICATION: 
A customer who indent to buy a mobile phone. Suppose there are four mobile phones Fi(1,2,3,4) and we want to select the best one. 

Four attributes are selected by experts Gj(j=1,2,3,4) G1:Internal storage , G2:Processor , G3:Camera features , G4= Battery power. 

In order ,the experts are required to evaluate the four mobile phones Fi(i=1,2,3,4) under  the  above four attribute  in anonymity. 

The decision matrix A=(Aij)mxn is presented in the table , Aij(i=1,2,3,4 and j=1,2,3,4) are in the form of BPFNS. 

STEP 1: The decision matrix provided by the patient is constructed as below: 

Table 4.1: The decision matrix table 

 

Fi /Gi G1 G2 G3 G4 

F1 (0.1,0.2,0.3, 

-0.1,-0.5,-0.3) 

(0.7,0.1,0.1, 

-0.1,-0.2,-0.3) 

(0.7,0.1,0.1, 

-0.8,-0.1,-0.1) 

(0.2,0.3,0.3, 

-0.2,-0.4,-0.1) 

F2 (0.2,0.4,0.3, 

-0.1,-0.7,-0.1) 

(0.1,0.6,0.1, 

-0.3,-0.2,-0.1) 

(0.1,0.1,0.1, 

-0.2,-0.3,-0.4) 

(0.1,0.2,0.3, 

-0.4,-0.5,-0.1) 

F3 (0.1,0.5,0.4, 

-0.2,0.4,-0.3) 

(0.2,0.4,0.5, 

-0.5,-0.1,-0.2) 

(0.1,0.4,0.5, 

-0.1,-0.2,-0.3) 

(0.3,0.1,0.3, 

-0.4,-0.3,-0.2) 

F4 (0.3,0.4,0.2, 

-0.2,-0.3,-0.4) 

(0.3,0.4,0.2, 

-0.5,-0.1,-0.3) 

(0.2,0.4,0.3, 

-0.1,-0.2,-0.4) 

(0.0,0.1,0.2, 

-0.3,-0.4,-0.1) 

 

The weight vector of the attributes Gj (j=1, 2, 3, 4) is ω= (0.1, 0.2, 0.3, 0.4) 

We utilize the decision information given in matrix A, iA
~

= BPFWGω (A1,A2,…,An), 

We have   

 

1

~
A =(0.4590,0.1414,0.2060,-0.4508,-0.1390,-0.1565) 
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2

~
A =(0.1203,0.2168,0.2062,-0.2935,-0.3693,-0.1825) 

3

~
A =(0.2380,0.2349,0.7054,-0.2988,-0.2194,-0.2390) 

4

~
A =(0.0772,0.2297,0.2314,-0.2969,-0.2392,-0.2525) 

STEP 2: Calculate the scores function S ( iA
~

) (i=1, 2, 3, 4) of the overall bipolar picture fuzzy values iA
~

. 

S (
1

~
A ) = 0.4927     S (

2

~
A ) = 0.4926     S ( 3

~
A ) = 0.4113      S (

4

~
A ) = 0.4719 

STEP 3: rank all the alternatives Gi(i=1,2,3,4) with the values of  S( iA
~

)(i=1,2,3,4)  

 
1

~
A > 

2

~
A > 

4

~
A > 3

~
A . 

Therefore the best one is 1

~
A .note that > means “preferred to”. 

 

V.  CONCLUSION: 

In this paper, bipolar picture fuzzy sets were developed and also discussed bipolar picture fuzzy relations .Then we characterized 

some of its properties. The operators Gω was developed along with the score function, accuracy function .To evaluate the values of 

alternatives on the attributes taken bipolar picture fuzzy decision making approach was proposed. To aggregate the bipolar picture 

fuzzy information to each alternative to obtain the collective values of the alternatives these operators are utilized. According to the 

values of the score, accuracy functions of the alternatives are ranked the most desirable one was selected. The effectiveness and 

application of the developed method, a numerical example was given to demonstrate. 
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