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ABSTRACT 

                      The paper investigates a technique for order preference by similarity to ideal solution (TOPSIS) method to solve 

multi-criteria decision making problems with bipolar Pythagorean fuzzy information. We define distance function to determine 

the distance between bipolar Pythagorean fuzzy numbers. In the decision making situation, the rating of performance values of 

the alternatives with respect to the criteria are provided by the decision maker in terms of bipolar Pythagorean fuzzy numbers. 

Also we develop bipolar Pythagorean fuzzy relative positive ideal solution (BNRPIS) and bipolar Pythagorean fuzzy relative 

negative ideal solution (BNRNIS). Then, the ranking order of the alternatives is obtained by TOPSIS method and most 

desirable alternative is selected. Finally, a numerical example is solved to demonstrate the applicability and effectiveness of the 

proposed approach. 

 

  Keywords: Pythagorean fuzzy sets, bipolar Pythagorean fuzzy sets, TOPSIS, multi-criteria decision making. 

1.  INTRODUCTION 

                       Zadeh [22] introduced the concept of fuzzy set to deal with problems with imprecise information in 1965. 

However, Zadeh [22] considers one single value to express the grade of membership of the fuzzy set defined  in a universe. But, it 

is not always possible to represent the grade of membership value by a single point. In order to overcome the difficulty, Turksen 

[12] incorporated interval valued fuzzy sets. In 1986, Atanassov [1] extended the concept of fuzzy sets [22] and defined 

intuitionistic fuzzy sets which are characterized by grade of membership and non-membership functions. Later, Lee [9,10] 

introduced the notion of bipolar fuzzy sets by extending the concept of fuzzy sets where the degree of membership is expanded 

from 

 [0, 1] to [-1, 1]. In a bipolar fuzzy set, if the degree of membership is zero then we say the element is unrelated to the 

corresponding property, the membership degree (0, 1] of an element specifies that the element somewhat satisfies the property, 

and the membership degree [−1, 0) of an element implies that the element somewhat satisfies the implicit counter-property [6]. 

                                     Decision making is a universal process in the life of human beings, which can be described as the final 

outcome of some mental and reasoning processes that lead to the selection of the best alternative. In many situations, it is difficult 

for decision makers to precisely express a preference regarding relevant alternatives un- der several criteria, especially when relying 

on inaccurate, uncertain, or incomplete information. To this end, the Zadeh  to address multiple criteria decision making (MCDM) 

problems within un- certainty. The fuzzy number is usually used by the decision maker to express his/her preference of an alternative 

with respect to a criterion, which means the degree to which the alternative satisfies the criterion. Afterwards, Atanassov showed 

that in several MCDM problems the decision makers may not only provide the degree to which the alternative satisfies the criterion 

but also give the degree to which the alternative dissatisfies the criterion, which is characterized by a membership degree and a non-

membership degree is equal to or less than 1.IFSs have been broadly applied in real-life MCDM or multiple criteria group 

decision making (MCGDM) problems.  

                     However, in several complex MCDM problems the decision makers may express their preferences of an alternative 

with a criterion satisfying the condition that the sum of the degree to which alternative satisfies the criterion and the degree to 

which the alternative dissatisfies the criterion is bigger than 1. Obviously, this situation cannot be described by using the IFS but 

can be described by using PFS because , the sum of membership degree and non-membership degree to which an alternative 
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satisfying an attribute provided by decision maker(DM) may be bigger than 1, but their square sum is less than or equal to1.Yager 

[19] familiarized the model of Pythagorean fuzzy set. The most important and central research topic is aggregation operators. 

There are many scholars worked in this area and introduced several operators. 

                 In this paper, we define distance function between two bipolar Pythagorean fuzzy sets (BPFSs) and its properties. We 

develop a new TOPSIS based method for solving multi-criteria group decision making problem (MCGDM) under bipolar 

Pythagorean fuzzy assessments and finally, give a numerical example. 

2. Pythagorean Fuzzy sets 

Definition 2.1[13] Let a set X be a universe of discourse. A PFS P is an object having the form: 

 

𝑃 = {〈𝑥, 𝜇𝑃(𝑥), 𝑣𝑃(𝑥)〉|𝑥 ∈ 𝑋} 

 

  where the function  𝜇𝑃: 𝑋 → [0,1] defines the degree of membership and 𝑣𝑃: 𝑋 → [0,1] defines the degree of 

nonmembership of the elements 𝑥 ∈ 𝑋 to P,respectively,and for every 𝑥 ∈ 𝑋,it holds that  

 

                                                                       (𝜇𝑃(𝑥))
2

+ (𝑣𝑃(𝑥))
2

≤ 1 

 

   For any PFS P and 𝑥 ∈ 𝑋, 𝜋𝑃(𝑥) = √1 −  (𝜇𝑃(𝑥))
2

− (𝑣𝑃(𝑥))
2
  is called the degree of indeterminacy of 𝑥 to P. 

 

Definition 2.2[13] Let 𝑃1 = (𝜇𝑃1
, 𝑣𝑃1

), 𝑃2 = (𝜇𝑃2
, 𝑣𝑃2

) and  𝑃 = (𝜇, 𝑣) be three PFSs.For any 𝜆(𝜆 > 0) represents a scalar 

mathematical operator,four basic  operations on them are defined as follows: 

Then 

1) 𝑃𝐶 = {〈𝑥, 𝑣𝑃(𝑥), 𝜇𝑃(𝑥)〉: 𝑥 ∈ 𝑋} 

2) 𝑃1 ∪ 𝑃2  = {〈𝑥, max (𝜇𝑃1 (𝑥), 𝜇𝑃2 (𝑥)) , min (𝑣𝑃1 (𝑥), 𝑣𝑃2 (𝑥))〉 : 𝑥 ∈ 𝑋} 

3) 𝑃1  ∩ 𝑃2  = {〈𝑥, min (𝜇𝑃1 (𝑥), 𝜇𝑃2 (𝑥)) , max(𝑣𝑃1 (𝑥), 𝑣𝑃2 (𝑥))〉 : 𝑥 ∈ 𝑋} 

 

 

Definition 2.3[13] 

                           Let 𝑃 = (𝜇𝑃 , 𝑣𝑃 ), 𝑃1  = (𝜇𝑃1 , 𝑣𝑃1 ), and 𝑃2  = (𝜇𝑃2 , 𝑣𝑃2 ), be three PFNs and  𝜆 > 0, then their   

   operations are defined as follows: 

 

1) 𝑃1  ⊕ 𝑃2  = (√𝜇𝑃1 
2 + 𝜇𝑃2 

2 −𝜇𝑃1 
2 𝜇𝑃2 

2 , 𝑣𝑃1 𝑣𝑃2 ) 

2) 𝑃1  ⊗ 𝑃2  = (𝜇𝑃1 𝜇𝑃2 , √𝑣𝑃1 
2 + 𝑣𝑃2 

2 −𝑣𝑃1 
2 𝑣𝑃2 

2 ) 

3) 𝜆𝑃 = (√1 − (1 − 𝜇𝑃
2)𝜆 , 𝑣𝑃

𝜆) 

4) 𝑃𝜆 = (𝜇𝑃
𝜆, √1 − (1 − 𝑣𝑃

2)𝜆) 

 

 

Definition 2.4[13] 

                      

                    For any PFN the score function of P is defined as follows: 

 

𝑆(𝑃) = 𝜇𝑃
2(𝑥) − 𝑣𝑃

2(𝑥) 

 

where 𝑆(𝑃) ∈ [−1,1]. For any two PFNs 𝑃1, 𝑃2 , if 𝑆(𝑃1) < 𝑆(𝑃2), then 𝑃1 < 𝑃2. If  𝑆(𝑃1) > 𝑆(𝑃2),  then 𝑃1 > 𝑃2.If 𝑆(𝑃1) =

𝑆(𝑃2), then 𝑃1~𝑃2.  

   Definition 2.5[13] 

                       

                    For any PFNs  𝑃 = (𝜇𝑃, 𝑣𝑃), the accuracy function of A is defined as follows: 

 

𝑎(𝑃) = 𝜇𝑃
2(𝑥) + 𝑣𝑃

2(𝑥) 

where  𝑎(𝑃) ∈ [0,1].  
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3.Bipolar Pythagorean Fuzzy Sets 

 

  Definition 3.1 [11]  

                           Let X be a non-empty set. A bipolar Pythagorean fuzzy set (BPFS) 𝛽𝑗 = {(𝑥, (𝑢𝛽𝑗

𝑃 , 𝑣𝛽𝑗

𝑃 ) , (𝑢𝛽𝑗

𝑁 , 𝑣𝛽𝑗

𝑁 )) |𝑥 ∈ 𝑋} 

where 𝑢𝛽𝑗

𝑃 : 𝑋 → [0,1],     𝑣𝛽𝑗

𝑃 : 𝑋 → [0,1],   𝑢𝛽𝑗

𝑁 : 𝑋 → [−1,0],   

𝑣𝛽𝑗

𝑁 : 𝑋 → [−1,0]  are the mappings such that 

                                     0 ≤ (𝑢𝛽𝑗

𝑃 (𝑥))
2

+ (𝑣𝛽𝑗

𝑃 (𝑥))
2

≤ 1  and  −1 ≤ − ((𝑢𝛽𝑗

𝑁 (𝑥))
2

+ (𝑣𝛽𝑗

𝑁 (𝑥))
2

) ≤ 0  

and  𝑢𝛽𝑗

𝑃 (𝑥) denote the positive membership degree, 𝑣𝛽𝑗

𝑃 (𝑥) denote the positive non-membership degree, 𝑢𝛽𝑗

𝑁 (𝑥) denote the 

negative membership degree and 𝑣𝛽𝑗

𝑁 (𝑥) denote the negative non-membership degree. The degree of indeterminacy 

                                𝜋𝛽𝑗

𝑃 (𝑥) = √1 − (𝑢𝛽𝑗

𝑃 (𝑥))
2

− (𝑣𝛽𝑗

𝑃 (𝑥))
2

  and   𝜋𝛽𝑗

𝑁 (𝑥) = −√1 − (𝑢𝛽𝑗

𝑁 (𝑥))
2

− (𝑣𝛽𝑗

𝑁 (𝑥))
2

. 

  Where (𝜋𝛽𝑗

𝑃 (𝑥))
2

=1 − (𝑢𝛽𝑗

𝑃 (𝑥))
2

− (𝑣𝛽𝑗

𝑃 (𝑥))
2

 , (𝜋𝛽𝑗

𝑁 (𝑥))
2

= 1 − (𝑢𝛽𝑗

𝑁 (𝑥))
2

− (𝑣𝛽𝑗

𝑁 (𝑥))
2

, 0 ≤ (𝜋𝛽𝑗

𝑃 (𝑥))
2

≤ 1, 

         −1 ≤ − (𝜋𝛽𝑗

𝑁 (𝑥))
2

≤ 0. 

 

Definition 3.2 [11] 

                           For any BPFN the score function of 𝛽 is defined as follows: 

𝑆(𝛽) =
1

2
((𝑢𝛽

𝑃(𝑥))
2

− (𝑣𝛽
𝑃(𝑥))

2
+ (𝑢𝛽

𝑁(𝑥))
2

− (𝑣𝛽
𝑁(𝑥))

2
) 

where  𝑆(𝛽) ∈ [−1,1]. For any two BPFNs 𝛽1, 𝛽2, if 𝑆( 𝛽1) < 𝑆(𝛽2), then  𝛽1 < 𝛽2.If  𝑆( 𝛽1) > 𝑆(𝛽2),  then 𝛽1 > 𝛽2.If 

𝑆( 𝛽1) = 𝑆(𝛽2), then  𝛽1~𝛽2.                      

Definition 3.3 [11] 

                              For any BPFNs  𝛽 = 𝑃(𝑢𝛽
𝑃, 𝑣𝛽

𝑃 , 𝑢𝛽
𝑁 , 𝑣𝛽

𝑁), the accuracy function of A is defined as follows: 

𝑎(𝛽) =
1

2
((𝑢𝛽

𝑃(𝑥))
2

+ (𝑣𝛽
𝑃(𝑥))

2
+ (𝑢𝛽

𝑁(𝑥))
2

+ (𝑣𝛽
𝑁(𝑥))

2
) 

where  𝑎(𝛽) ∈ [0,1].  

 

Definition 3.4 [11] 

                            Let 𝛽1 = {(𝑥, (𝑢𝛽1

𝑃 , 𝑣𝛽1

𝑃 ), (𝑢𝛽1

𝑁 , 𝑣𝛽1

𝑁 )) : 𝑥 ∈ 𝑋} and 𝛽2 = {(𝑥, (𝑢𝛽2

𝑃 , 𝑣𝛽2

𝑃 ), (𝑢𝛽2

𝑁 , 𝑣𝛽2

𝑁 )) : 𝑥 ∈ 𝑋}be two BPFSs, then 

their operations are defined as follows: 

1) 𝛽1 ∪ 𝛽2 = {(𝑥, 𝑚𝑎𝑥(𝑢𝛽1

𝑃 , 𝑢𝛽2

𝑃 ), 𝑚𝑖𝑛(𝑣𝛽1

𝑃 , 𝑣𝛽2

𝑃 ), 𝑚𝑖𝑛(𝑢𝛽1

𝑁 , 𝑢𝛽2

𝑁 ), 𝑚𝑎𝑥(𝑣𝛽1

𝑁 , 𝑣𝛽2

𝑁 )) : 𝑥 ∈ 𝑋} 

2) 𝛽1 ∪ 𝛽2 = {(𝑥, 𝑚𝑖𝑛(𝑢𝛽1

𝑃 , 𝑢𝛽2

𝑃 ), 𝑚𝑎𝑥(𝑣𝛽1

𝑃 , 𝑣𝛽2

𝑃 ), 𝑚𝑎𝑥(𝑢𝛽1

𝑁 , 𝑢𝛽2

𝑁 ), 𝑚𝑖𝑛(𝑣𝛽1

𝑁 , 𝑣𝛽2

𝑁 )) : 𝑥 ∈ 𝑋} 

3)  𝛽𝐶 = {(𝑥, (𝑣 𝛽
𝑃 , 𝑢 𝛽

𝑃 ), (𝑣 𝛽
𝑁 , 𝑢 𝛽

𝑁 )) : 𝑥 ∈ 𝑋} 

Definition 3.5 [11]              

                           Let 𝛽1 = 𝑃(𝑢𝛽1

𝑃 , 𝑣𝛽1

𝑃 , 𝑢𝛽1

𝑁 , 𝑣𝛽1

𝑁 ), and 𝛽2 = 𝑃(𝑢𝛽2

𝑃 , 𝑣𝛽2

𝑃 , 𝑢𝛽2

𝑁 , 𝑣𝛽2

𝑁 ), be two BPFNs and 𝜆 > 0, then their operations are 

defined as follows: 

 (1)𝛽1 ⊕ 𝛽2 = 𝑃 ((√(𝑢𝛽1

𝑃 )
2

+ (𝑢𝛽2

𝑃 )
2

− (𝑢𝛽1

𝑃 )
2

(𝑢𝛽2

𝑃 )
2

, 𝑣𝛽1

𝑃 𝑣𝛽2

𝑃 ) , (−𝑢𝛽1

𝑁 𝑢𝛽2

𝑁 , −√(𝑣𝛽1

𝑁 )
2

+ (𝑣𝛽2

𝑁 )
2

− (𝑣𝛽1

𝑁 )
2

(𝑣𝛽2

𝑁 )
2

)) 

 (2)𝛽1 ⊗ 𝛽2 = 𝑃 ((𝑢𝛽1

𝑃 𝑢𝛽2

𝑃 , √(𝑣𝛽1

𝑃 )
2

+ (𝑣𝛽2

𝑃 )
2

− (𝑣𝛽1

𝑃 )
2

(𝑣𝛽2

𝑃 )
2

) , (−√(𝑢𝛽1

𝑁 )
2

+ (𝑢𝛽2

𝑁 )
2

− (𝑢𝛽1

𝑁 )
2

(𝑢𝛽2

𝑁 )
2

, −𝑣𝛽1

𝑁 𝑣𝛽2

𝑁 )) 

 (3) 𝜆𝛽1 = 𝑃 ((√1 − (1 − (𝑢𝛽1

𝑃 )
2

)
𝜆

, (𝑣𝛽1

𝑃 )
𝜆

) , (−(−𝑢𝛽1

𝑁 )
𝜆

, −√1 − (1 − (𝑣𝛽1

𝑁 )
2

)
𝜆

)) 
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 (4) 𝐴𝜆 = 𝑃 (((𝑢𝛽1

𝑃 )
𝜆

, √1 − (1 − (𝑣𝛽1

𝑃 )
2

)
𝜆

) , (−√1 − (1 − (𝑢𝛽1

𝑁 )
2

)
𝜆

, −(−𝑣𝛽1

𝑁 )
𝜆

)) 

 

Theorem 3.1 

                          Let 𝛽1 = 𝑃(𝑢𝛽1

𝑃 , 𝑣𝛽1

𝑃 , 𝑢𝛽1

𝑁 , 𝑣𝛽1

𝑁 ) and  𝛽2 = 𝑃(𝑢𝛽2

𝑃 , 𝑣𝛽2

𝑃 , 𝑢𝛽2

𝑁 , 𝑣𝛽2

𝑁 )  be two BPFNs and 𝜆 > 0, 𝜆1 > 0, 𝜆2 > 0 , then, 

1)  𝛽1 ⊕   𝛽2 =   𝛽2 ⊕  𝛽1; 

2)  𝛽1 ⊗   𝛽2 =   𝛽2 ⊗  𝛽1; 

3) 𝜆( 𝛽1 ⊕   𝛽2) = 𝜆 𝛽1 ⊕ 𝜆  𝛽2; 

4) 𝜆1 𝛽1 ⊕ 𝜆2 𝛽1 = (𝜆1 + 𝜆2) 𝛽1; 

5) ( 𝛽1 ⊗   𝛽2)𝜆 =  𝛽1
𝜆 ⊗   𝛽2

𝜆; 

6)  𝛽1
𝜆1 ⊗  𝛽1

𝜆2 =  𝛽1
(𝜆1+𝜆2)

; 

Proof: 

                For the three PFNs A,B and C and 𝜆, 𝜆1  and 𝜆2 > 0, according to Definition 2.1, we can prove 

 

1) 𝛽1 ⊕ 𝛽2 = 𝑃 ((√(𝑢𝛽1

𝑃 )
2

+ (𝑢𝛽2

𝑃 )
2

− (𝑢𝛽1

𝑃 )
2

(𝑢𝛽2

𝑃 )
2

, 𝑣𝛽1

𝑃 𝑣𝛽2

𝑃 ) , (−𝑢𝛽1

𝑁 𝑢𝛽2

𝑁 , −√(𝑣𝛽1

𝑁 )
2

+ (𝑣𝛽2

𝑁 )
2

− (𝑣𝛽1

𝑁 )
2

(𝑣𝛽2

𝑁 )
2

)) 

                      = 𝑃 ((√(𝑢𝛽2

𝑃 )
2

+ (𝑢𝛽1

𝑃 )
2

− (𝑢𝛽2

𝑃 )
2

(𝑢𝛽1

𝑃 )
2

, 𝑣𝛽2

𝑃 𝑣𝛽1

𝑃 ) , (−𝑢𝛽2

𝑁 𝑢𝛽1

𝑁 , −√(𝑣𝛽2

𝑁 )
2

+ (𝑣𝛽1

𝑁 )
2

− (𝑣𝛽2

𝑁 )
2

(𝑣𝛽1

𝑁 )
2

))  

 = 𝛽2 ⊕ 𝛽1. 

 2) 𝛽1 ⊗ 𝛽2 = 𝑃 ((𝑢𝛽1

𝑃 𝑢𝛽2

𝑃 , √(𝑣𝛽1

𝑃 )
2

+ (𝑣𝛽2

𝑃 )
2

− (𝑣𝛽1

𝑃 )
2

(𝑣𝛽2

𝑃 )
2

) , (−√(𝑢𝛽1

𝑁 )
2

+ (𝑢𝛽2

𝑁 )
2

− (𝑢𝛽1

𝑁 )
2

(𝑢𝛽2

𝑁 )
2

, −𝑣𝛽1

𝑁 𝑣𝛽2

𝑁 )) 

= 𝑃 ((𝑢𝛽2

𝑃 𝑢𝛽1

𝑃 , √(𝑣𝛽2

𝑃 )
2

+ (𝑣𝛽1

𝑃 )
2

− (𝑣𝛽2

𝑃 )
2

(𝑣𝛽1

𝑃 )
2

) , (−√(𝑢𝛽2

𝑁 )
2

+ (𝑢𝛽1

𝑁 )
2

− (𝑢𝛽2

𝑁 )
2

(𝑢𝛽1

𝑁 )
2

, −𝑣𝛽2

𝑁 𝑣𝛽1

𝑁 )) 

 = 𝛽2 ⊗ 𝛽1. 

 3) 𝜆(𝛽1 ⊕ 𝛽2) = 𝜆 (𝑃 ((√(𝑢𝛽1

𝑃 )
2

+ (𝑢𝛽2

𝑃 )
2

− (𝑢𝛽1

𝑃 )
2

(𝑢𝛽2

𝑃 )
2

, 𝑣𝛽1

𝑃 𝑣𝛽2

𝑃 ), 

          (−𝑢𝛽1

𝑁 𝑢𝛽2

𝑁 , −√(𝑣𝛽1

𝑁 )
2

+ (𝑣𝛽2

𝑁 )
2

− (𝑣𝛽1

𝑁 )
2

(𝑣𝛽2

𝑁 )
2

)))           

                         = 𝑃 (√1 − (1 − ((𝑢𝛽1

𝑃 )
2

+ (𝑢𝛽2

𝑃 )
2

− (𝑢𝛽1

𝑃 )
2

(𝑢𝛽2

𝑃 )
2

))
𝜆

, (𝑣𝛽1

𝑃 𝑣𝛽2

𝑃 )
𝜆

, − (−(−𝑢𝛽1

𝑁 𝑢𝛽2

𝑁 ))
𝜆

, 

−√1 − (1 − ((𝑣𝛽1

𝑁 )
2

+ (𝑣𝛽2

𝑁 )
2

− (𝑣𝛽1

𝑁 )
2

(𝑣𝛽2

𝑁 )
2

)
𝜆

)) 

= 𝑃 (√1 − (1 − ((𝑢𝛽1

𝑃 )
2

+ (𝑢𝛽2

𝑃 )
2

− (𝑢𝛽1

𝑃 )
2

(𝑢𝛽2

𝑃 )
2

))
𝜆

, (𝑣𝛽1

𝑃 𝑣𝛽2

𝑃 )
𝜆

, −(𝑢𝛽1

𝑁 𝑢𝛽2

𝑁 )
𝜆

, 

         −√1 − (1 − ((𝑣𝛽1

𝑁 )
2

+ (𝑣𝛽2

𝑁 )
2

− (𝑣𝛽1

𝑁 )
2

(𝑣𝛽2

𝑁 )
2

)
𝜆

)) 

           𝜆𝛽1 ⊕ 𝜆𝛽2 = 𝑃 ((√1 − (1 − (𝑢𝛽1

𝑃 )
2

)
𝜆

, 𝑣𝛽1

𝑃 𝜆
, −(−𝑢𝛽1

𝑁 )
𝜆

, −√1 − (1 − (𝑣𝛽1

𝑁 )
2

)
𝜆

)  ⊕ 
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                                                                               (√1 − (1 − (𝑢𝛽2

𝑃 )
2

)
𝜆

, 𝑣𝛽2

𝑃 𝜆
, −(−𝑢𝛽2

𝑁 )
𝜆

, −√1 − (1 − (𝑣𝛽2

𝑁 )
2

)
𝜆

))       

                              = 𝑃 ((√1 − (1 − (𝑢𝛽1

𝑃 )
2

)
𝜆

+ 1 − (1 − (𝑢𝛽2

𝑃 )
2

)
𝜆

− (1 − (1 − (𝑢𝛽1

𝑃 )
2

)
𝜆

) (1 − (1 − (𝑢𝛽2

𝑃 )
2

)
𝜆

) , (𝑣𝛽1

𝑃 𝑣𝛽2

𝑃 )
𝜆

)  

                             

            (−(𝑢𝛽1

𝑁 𝑢𝛽2

𝑁 )
𝜆

, −√1 − (1 − (𝑣𝛽1

𝑁 )
2

)
𝜆

+ 1 − (1 − (𝑣𝛽2

𝑁 )
2

)
𝜆

− (1 − (1 − (𝑣𝛽1

𝑁 )
2

)
𝜆

) (1 − (1 − (𝑣𝛽2

𝑁 )
2

)
𝜆

))    ) 

                                         

                              = 𝑃 (√1 − (1 − ((𝑢𝛽1

𝑃 )
2

+ (𝑢𝛽2

𝑃 )
2

− (𝑢𝛽1

𝑃 )
2

(𝑢𝛽2

𝑃 )
2

))
𝜆

, (𝑣𝛽1

𝑃 𝑣𝛽2

𝑃 )
𝜆

, −(𝑢𝛽1

𝑁 𝑢𝛽2

𝑁 )
𝜆

, 

−√1 − (1 − ((𝑣𝛽1

𝑁 )
2

+ (𝑣𝛽2

𝑁 )
2

− (𝑣𝛽1

𝑁 )
2

(𝑣𝛽2

𝑁 )
2

)
𝜆

)) 

 

                                    = 𝜆(𝛽1 ⊕ 𝛽2). 

(4) 𝜆1𝛽 ⊕ 𝜆2𝛽 = 𝑃 ((√1 − (1 − (𝑢𝛽
𝑃)

2
)

𝜆1
, 𝑣𝛽

𝑃 𝜆1 , −(−𝑢𝛽
𝑁)

𝜆1
, −√1 − (1 − (𝑣𝛽

𝑁)
2

)
𝜆1

)  ⊕ 

                                                                               

                                                      (√1 − (1 − (𝑢𝛽
𝑃)

2
)

𝜆2
, 𝑣𝛽

𝑃 𝜆2 , −(−𝑢𝛽
𝑁)

𝜆2
, −√1 − (1 − (𝑣𝛽

𝑁)
2

)
𝜆2

)) 

          = 𝑃 ((√1 − (1 − (𝑢𝛽
𝑃)

2
)

𝜆1
+ 1 − (1 − (𝑢𝛽

𝑃)
2

)
𝜆2

− (1 − (1 − (𝑢𝛽
𝑃)

2
)

𝜆1
) (1 − (1 − (𝑢𝛽

𝑃)
2

)
𝜆2

) , 𝑣𝛽
𝑃 𝜆1𝑣𝛽

𝑃 𝜆2)  

                             

                         (−(−𝑢𝛽
𝑁)

𝜆1
(−𝑢𝛽

𝑁)
𝜆2

, −√1 − (1 − (𝑣𝛽1

𝑁 )
2

)
𝜆

+ 1 − (1 − (𝑣𝛽1

𝑁 )
2

)
𝜆

− (1 − (1 − (𝑣𝛽1

𝑁 )
2

)
𝜆

) (1 − (1 − (𝑣𝛽2

𝑁 )
2

)
𝜆

))) 

    = 𝑃 ((√1 − (1 − (𝑢𝛽
𝑃)

2
)

𝜆1+𝜆2
, (𝑣𝛽

𝑃)
𝜆1+𝜆2

) , (−(−𝑢𝛽
𝑁)

𝜆1+𝜆2
, −√1 − (1 − (𝑣𝛽

𝑁)
2

)
𝜆1+𝜆2

)) = (𝜆1 + 𝜆2)𝛽. 

(5)  (𝛽1 ⊗ 𝛽2)𝜆 =  𝑃 ((√(𝑢𝛽1

𝑃 )
2

+ (𝑢𝛽2

𝑃 )
2

− (𝑢𝛽1

𝑃 )
2

(𝑢𝛽2

𝑃 )
2

, 𝑣𝛽1

𝑃 𝑣𝛽2

𝑃 ) , (−𝑢𝛽1

𝑁 𝑢𝛽2

𝑁 , −√(𝑣𝛽1

𝑁 )
2

+ (𝑣𝛽2

𝑁 )
2

− (𝑣𝛽1

𝑁 )
2

(𝑣𝛽2

𝑁 )
2

))

𝜆

 

            

                                          = 𝑃 ((𝑢𝛽1

𝑃 𝑢𝛽2

𝑃 )
𝜆

, √1 − (1 − ((𝑣𝛽1

𝑃 )
2

+ (𝑣𝛽2

𝑃 )
2

− (𝑣𝛽1

𝑃 )
2

(𝑣𝛽2

𝑃 )
2

))
𝜆

, 

                           −√1 − (1 − ((𝑢𝛽1

𝑁 )
2

+ (𝑢𝛽2

𝑁 )
2

− (𝑢𝛽1

𝑁 )
2

(𝑢𝛽2

𝑁 )
2

)
𝜆

) , − (−(−𝑣𝛽1

𝑁 𝑣𝛽2

𝑁 ))
𝜆

) 

= 𝑃 ((𝑢𝛽1

𝑃 𝑢𝛽2

𝑃 )
𝜆

, √1 − (1 − ((𝑣𝛽1

𝑃 )
2

+ (𝑣𝛽2

𝑃 )
2

− (𝑣𝛽1

𝑃 )
2

(𝑣𝛽2

𝑃 )
2

))
𝜆

, 

                    −√1 − (1 − ((𝑢𝛽1

𝑁 )
2

+ (𝑢𝛽2

𝑁 )
2

− (𝑢𝛽1

𝑁 )
2

(𝑢𝛽2

𝑁 )
2

)
𝜆

) , −(𝑣𝛽1

𝑁 𝑣𝛽2

𝑁 )
𝜆

) 
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           𝛽1
𝜆 ⊗ 𝛽2

𝜆 = 𝑃 ((𝑢𝛽1

𝑃 𝜆
, √1 − (1 − (𝑣𝛽1

𝑃 )
2

)
𝜆

, −√1 − (1 − (𝑢𝛽1

𝑁 )
2

)
𝜆

, −(−𝑣𝛽1

𝑁 )
𝜆

)  ⊕ 

                                                                               (𝑢𝛽2

𝑃 𝜆
, √1 − (1 − (𝑣𝛽2

𝑃 )
2

)
𝜆

, −√1 − (1 − (𝑢𝛽2

𝑁 )
2

)
𝜆

, −(−𝑣𝛽2

𝑁 )
𝜆

))       

                              = 𝑃 (((𝑢𝛽1

𝑃 𝑢𝛽2

𝑃 )
𝜆

, √1 − (1 − (𝑣𝛽1

𝑃 )
2

)
𝜆

+ 1 − (1 − (𝑣𝛽1

𝑃 )
2

)
𝜆

− (1 − (1 − (𝑣𝛽1

𝑃 )
2

)
𝜆

) (1 − (1 − (𝑣𝛽2

𝑃 )
2

)
𝜆

))  

                             

            (−√1 − (1 − (𝑢𝛽1

𝑁 )
2

)
𝜆

+ 1 − (1 − (𝑢𝛽1

𝑁 )
2

)
𝜆

− (1 − (1 − (𝑢𝛽1

𝑁 )
2

)
𝜆

) (1 − (1 − (𝑢𝛽2

𝑁 )
2

)
𝜆

) , −(𝑣𝛽1

𝑁 𝑣𝛽2

𝑁 )
𝜆

)    ) 

                                         

= 𝑃 ((𝑢𝛽1

𝑃 𝑢𝛽2

𝑃 )
𝜆

, √1 − (1 − ((𝑣𝛽1

𝑃 )
2

+ (𝑣𝛽2

𝑃 )
2

− (𝑣𝛽1

𝑃 )
2

(𝑣𝛽2

𝑃 )
2

))
𝜆

, 

                    −√1 − (1 − ((𝑢𝛽1

𝑁 )
2

+ (𝑢𝛽2

𝑁 )
2

− (𝑢𝛽1

𝑁 )
2

(𝑢𝛽2

𝑁 )
2

)
𝜆

) , −(𝑣𝛽1

𝑁 𝑣𝛽2

𝑁 )
𝜆

) 

                                          = (𝛽1 ⊕ 𝛽2)𝜆. 

(6) 𝛽𝜆1 ⊗ 𝛽𝜆2 = 𝑃 ((𝑢𝛽
𝑃 𝜆1 , √1 − (1 − (𝑣𝛽

𝑃)
2

)
𝜆1

, −√1 − (1 − (𝑢𝛽
𝑁)

2
)

𝜆1
, −(−𝑣𝛽

𝑁)
𝜆1

)  ⊕ 

                                                                               

                                                         (𝑢𝛽
𝑃 𝜆2 , √1 − (1 − (𝑣𝛽

𝑃)
2

)
𝜆2

, −√1 − (1 − (𝑢𝛽
𝑁)

2
)

𝜆2
, −(−𝑣𝛽

𝑁)
𝜆2

)) 

          = 𝑃 ((𝑢𝛽
𝑃 𝜆1𝑢𝛽

𝑃 𝜆2 , √1 − (1 − (𝑣𝛽
𝑃)

2
)

𝜆1
+ 1 − (1 − (𝑣𝛽

𝑃)
2

)
𝜆2

− (1 − (1 − (𝑣𝛽
𝑃)

2
)

𝜆1
) (1 − (1 − (𝑣𝛽

𝑃)
2

)
𝜆2

))  

                             

                         (−√1 − (1 − (𝑢𝛽1

𝑁 )
2

)
𝜆

+ 1 − (1 − (𝑢𝛽1

𝑁 )
2

)
𝜆

− (1 − (1 − (𝑢𝛽1

𝑁 )
2

)
𝜆

) (1 − (1 − (𝑢𝛽2

𝑁 )
2

)
𝜆

) , −(−𝑣𝛽
𝑁)

𝜆1
(−𝑣𝛽

𝑁)
𝜆2

)) 

    = 𝑃 (((𝑢𝛽
𝑃)

𝜆1+𝜆2
, √1 − (1 − (𝑣𝛽

𝑃)
2

)
𝜆1+𝜆2

) , (−√1 − (1 − (𝑢𝛽
𝑁)

2
)

𝜆1+𝜆2
, −(−𝑣𝛽

𝑁)
𝜆1+𝜆2

)) = 𝛽(𝜆1+𝜆2). 

 

4. TOPSIS approach to MCDM problem with bipolar Pythagorean fuzzy information 

 

This section first introduces the MCDM problem under bipolar Pythagorean fuzzy environment. Then, an effective decision-

making approach is proposed to deal with such MCDM problems. 

 

4.1 Description of the MCDM problem with BPFNs 

 

A MCDM problem can be expressed as a decision matrix whose elements indicate the evaluation values of all alternatives 

with respect to each criterion. For a given MCDM problem under bipolar Pythagorean fuzzy environment, let 𝑋 =

{𝑥1, 𝑥2, … , 𝑥𝑚} (𝑚 ≥ 2) be a discrete of m feasible alternatives, 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑚} be a finite set of criteria, and 𝜔 =

(𝜔1, 𝜔2, … , 𝜔𝑚)𝑇 be the weight vector of all criteria,which satisfy 0 ≤ 𝑤𝑗 ≤ 1 and ∑ 𝜔𝑗 = 1.𝑛
𝑗=1 We denote the evaluation values 

of the alternative 𝑥𝑖(𝑖 = 1,2, … , 𝑚) with respect to the criteria 𝐶𝑗(𝑗 = 1,2, … , 𝑛) by 𝐶𝑗(𝑥𝑖) = 𝑃(𝑢𝑖𝑗
𝑃 , 𝑣𝑖𝑗

𝑃 , 𝑢𝑖𝑗
𝑁 , 𝑣𝑖𝑗

𝑁) and 𝑅 =
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(𝐶𝑗(𝑥𝑖))
𝑚×𝑛

 is a bipolar Pythagorean fuzzy decision matrix. Therefore, the MCDM problem with BPFNs can be represented as 

the following matrix form: 

 

                                                                      𝐶1                    …                   𝐶𝑛 

𝑅 = (𝐶𝑗(𝑥𝑖))
𝑚×𝑛

=

𝑥1

⋮
𝑥𝑚

(
𝑃(𝑢11

𝑃 , 𝑣11
𝑃 , 𝑢11

𝑁 , 𝑣11
𝑁 ) ⋯ 𝑃(𝑢1𝑛

𝑃 , 𝑣1𝑛
𝑃 , 𝑢1𝑛

𝑁 , 𝑣1𝑛
𝑁 )

⋮ ⋱ ⋮
𝑃(𝑢𝑚1

𝑃 , 𝑣𝑚1
𝑃 , 𝑢𝑚1

𝑁 , 𝑣𝑚1
𝑁 ) ⋯ 𝑃(𝑢𝑚𝑛

𝑃 , 𝑣𝑚𝑛
𝑃 , 𝑢𝑚𝑛

𝑁 , 𝑣𝑚𝑛
𝑁 )

)                        (4.1) 

 

where each of elements 𝐶𝑗(𝑥𝑖) = 𝑃(𝑢𝑖𝑗
𝑃 , 𝑣𝑖𝑗

𝑃 , 𝑢𝑖𝑗
𝑁 , 𝑣𝑖𝑗

𝑁) is a BPFN. 

 

4.2 The Proposed Decision Approach  

 

To effectively solve the aforementioned MCDM problem with BPFNs, in the following we propose a bipolar Pythagorean 

fuzzy TOPSIS method. The proposed method is based on the principle that the optimal alternative should have the shortest  

distance from the PIS and the farthest distance from the NIS. 

                          Therefore, this approach starts with the determination of the bipolar Pythagorean fuzzy PIS and the bipolar 

Pythagorean fuzzy NIS. Considering that the decision information takes the form of BPFNs, we utilize the score function based 

comparison approach introduced in Definition 2.4 to identify the bipolar Pythagorean fuzzy PIS and the Pythagorean fuzzy NIS. 

We denote the bipolar Pythagorean fuzzy PIS by 𝑥+,which can be determined by the following formula: 

 

                        𝑥+ =  {𝐶𝑗 , 𝑚𝑎𝑥(𝑢𝑖𝑗
𝑃 )|, 𝑚𝑖𝑛(𝑣𝑖𝑗

𝑃 ), 𝑚𝑖𝑛(𝑢𝑖𝑗
𝑁), 𝑚𝑎𝑥(𝑣𝑖𝑗

𝑁)|𝑗 = 1,2, … , 𝑛}                                               

 

                                         = {(𝐶1, 𝑃((𝑢1
𝑃)+, (𝑣1

𝑃)+, (𝑢1
𝑁)+, (𝑣1

𝑁)+))(𝐶2, 𝑃((𝑢2
𝑃)+, (𝑣2

𝑃)+, (𝑢2
𝑁)+, (𝑣2

𝑁)+)), …, 

                                                                                         

                                                                                     (𝐶𝑛, 𝑃((𝑢𝑛
𝑃)+, (𝑣𝑛

𝑃)+, (𝑢𝑛
𝑁)+, (𝑣𝑛

𝑁)+))}                             (4.2) 

 

      In the real –life MCDM process, there usually exist no bipolar Pythagorean fuzzy PIS. In other words, the bipolar 

Pythagorean fuzzy PIS 𝑥+ is usual not be the feasible alternative, namely, 𝑥+ ∉ 𝑋. Otherwise, the bipolar Pythagorean fuzzy PIS 

𝑥+ is the optimal alternative of the MCDM problem. Then, we proceed to calculate the distance between each alternative and the 

bipolar Pythagorean fuzzy PIS.To this end, we need to define the concept of distance measure for BPFNs. 

 

Definition 4.1 

                      Let  𝛽𝑗 = (𝑢 𝛽𝑗

𝑃 , 𝑣 𝛽𝑗

𝑃 , 𝑢 𝛽𝑗

𝑁 , 𝑣 𝛽𝑗

𝑁 )  (𝑗 = 1,2) be two BPFNs, then we define the distance between 𝛽1 and 𝛽2  as 

follows: 

              𝑑(𝛽1, 𝛽2) =
1

4
(|(𝑢𝛽1

𝑃 )
2

− (𝑢𝛽2

𝑃 )
2

| + |(𝑣𝛽1

𝑃 )
2

− (𝑣𝛽2

𝑃 )
2

| + |(𝑢𝛽1

𝑁 )
2

− (𝑢𝛽2

𝑁 )
2

| + |(𝑣𝛽1

𝑁 )
2

− (𝑣𝛽2

𝑁 )
2

| + 

                                       |(𝜋𝛽1

𝑃 )
2

− (𝜋𝛽2

𝑃 )
2

| + |(𝜋𝛽1

𝑁 )
2

− (𝜋𝛽2

𝑁 )
2

|)                                                       ( 4.3) 

Theorem 4.1 

      Let  𝛽𝑗 = (𝑢 𝛽𝑗

𝑃 , 𝑣 𝛽𝑗

𝑃 , 𝑢 𝛽𝑗

𝑁 , 𝑣 𝛽𝑗

𝑁 )  (𝑗 = 1,2) be two BPFNs, then 0 ≤ 𝑑(𝛽1, 𝛽2) ≤ 1. 

Proof: 

                    Because 0 ≤ 𝑢𝛽1

𝑃 , 𝑣𝛽1

𝑃 , 𝑢𝛽2

𝑃 , 𝑣𝛽2

𝑃 ≤ 1, −1 ≤  𝑢𝛽1

𝑁 , 𝑣𝛽1

𝑁 , 𝑢𝛽2

𝑁 , 𝑣𝛽2

𝑁 ≤ 0 , 

                
  

 (𝑢𝛽1

𝑃 )
2

+ (𝑣𝛽1

𝑃 )
2

≤ 1  ,  (𝑢𝛽2

𝑃 )
2

+ (𝑣𝛽2

𝑃 )
2

≤ 1,  

 

            − ((𝑢𝛽1

𝑁 )
2

+ (𝑣𝛽1

𝑁 )
2

) ≥ −1 and  − ((𝑢𝛽2

𝑁 )
2

+ (𝑣𝛽2

𝑁 )
2

) ≥ −1, then  

 

  𝑑(𝛽1, 𝛽2) =
1

4
(|(𝑢𝛽1

𝑃 )
2

− (𝑢𝛽2

𝑃 )
2

| + |(𝑣𝛽1

𝑃 )
2

− (𝑣𝛽2

𝑃 )
2

| + |(𝑢𝛽1

𝑁 )
2

− (𝑢𝛽2

𝑁 )
2

| + |(𝑣𝛽1

𝑁 )
2

− (𝑣𝛽2

𝑁 )
2

|+ 

                  |1 − (𝑢𝛽1

𝑃 )
2

− (𝑣𝛽1

𝑃 )
2

− (1 −  (𝑢𝛽2

𝑃 )
2

− (𝑣𝛽2

𝑃 )
2

)| + |1 − (𝑢𝛽1

𝑃 )
2

− (𝑣𝛽1

𝑃 )
2

− (1 −  (𝑢𝛽2

𝑃 )
2

− (𝑣𝛽2

𝑃 )
2

)|) 

                 =
1

4
(|(𝑢𝛽1

𝑃 )
2

− (𝑢𝛽2

𝑃 )
2

| + |(𝑣𝛽1

𝑃 )
2

− (𝑣𝛽2

𝑃 )
2

| + |(𝑢𝛽1

𝑁 )
2

− (𝑢𝛽2

𝑁 )
2

| + |(𝑣𝛽1

𝑁 )
2

− (𝑣𝛽2

𝑁 )
2

|+ 

                  |(𝑢𝛽2

𝑃 )
2

− (𝑢𝛽1

𝑃 )
2

+  (𝑣𝛽2

𝑃 )
2

− (𝑣𝛽1

𝑃 )
2

| + |(𝑢𝛽2

𝑁 )
2

− (𝑢𝛽1

𝑁 )
2

+  (𝑣𝛽2

𝑁 )
2

− (𝑣𝛽1

𝑁 )
2

|) 

               ≤
1

4
((𝑢𝛽1

𝑃 )
2

+ (𝑣𝛽1

𝑃 )
2

+ (𝑢𝛽2

𝑃 )
2

+ (𝑣𝛽2

𝑃 )
2

+ (𝑢𝛽1

𝑁 )
2

+ (𝑣𝛽1

𝑁 )
2

+ (𝑢𝛽2

𝑁 )
2

+ (𝑣𝛽2

𝑁 )
2

) 

               ≤
1

4
(4) = 1 
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Additionally, according to Definition 4.1,it can be easily seen that 𝑑(𝛽1, 𝛽2) ≥ 0. Thus, 0 ≤ 𝑑(𝛽1, 𝛽2) ≤ 1, which completes 

the proof of Theorem 4.1. 

Theorem 4.2 

       Let  𝛽𝑗 = (𝑢 𝛽𝑗

𝑃 , 𝑣 𝛽𝑗

𝑃 , 𝑢 𝛽𝑗

𝑁 , 𝑣 𝛽𝑗

𝑁 )  (𝑗 = 1,2) be two BPFNs, then 𝑑(𝛽1, 𝛽2) = 0, if and only if 𝛽1 = 𝛽2. 

Theorem 4.3 

       Let  𝛽𝑗 = (𝑢 𝛽𝑗

𝑃 , 𝑣 𝛽𝑗

𝑃 , 𝑢 𝛽𝑗

𝑁 , 𝑣 𝛽𝑗

𝑁 )  (𝑗 = 1,2) be two BPFNs, then  𝑑(𝛽1, 𝛽2) = 𝑑(𝛽2, 𝛽1). 

Proof: 

           𝑑(𝛽1, 𝛽2) = 
1

4
(|(𝑢𝛽1

𝑃 )
2

− (𝑢𝛽2

𝑃 )
2

| + |(𝑣𝛽1

𝑃 )
2

− (𝑣𝛽2

𝑃 )
2

| + |(𝑢𝛽1

𝑁 )
2

− (𝑢𝛽2

𝑁 )
2

| + |(𝑣𝛽1

𝑁 )
2

− (𝑣𝛽2

𝑁 )
2

|+ 

                                     |1 − (𝑢𝛽1

𝑃 )
2

− (𝑣𝛽1

𝑃 )
2

− (1 −  (𝑢𝛽2

𝑃 )
2

− (𝑣𝛽2

𝑃 )
2

)| + |1 − (𝑢𝛽1

𝑃 )
2

− (𝑣𝛽1

𝑃 )
2

− (1 −  (𝑢𝛽2

𝑃 )
2

−

                                                                                                                                                                                              (𝑣𝛽2

𝑃 )
2

)|) 

                            = 
1

4
(|(𝑢𝛽2

𝑃 )
2

− (𝑢𝛽1

𝑃 )
2

| + |(𝑣𝛽2

𝑃 )
2

− (𝑣𝛽1

𝑃 )
2

| + |(𝑢𝛽2

𝑁 )
2

− (𝑢𝛽1

𝑁 )
2

| + |(𝑣𝛽2

𝑁 )
2

− (𝑣𝛽1

𝑁 )
2

|+ 

                                     |1 − (𝑢𝛽2

𝑃 )
2

− (𝑣𝛽2

𝑃 )
2

− (1 −  (𝑢𝛽1

𝑃 )
2

− (𝑣𝛽1

𝑃 )
2

)| + |1 − (𝑢𝛽2

𝑃 )
2

− (𝑣𝛽2

𝑃 )
2

− (1 −   (𝑢𝛽1

𝑃 )
2

−

                                                                                                                                                                                              (𝑣𝛽1

𝑃 )
2

)|) 

                            = 𝑑(𝛽2, 𝛽1). 

                       

             Thus, the distance between the alternative  𝑥𝑖  and the bipolar Pythagorean fuzzy PIS 𝑥+ can be calculated by using 

Equation (4.3) as follows: 

 

    𝐷(𝑥𝑖 , 𝑥+) = ∑ 𝜔𝑗𝑑 (𝐶𝑗(𝑥𝑖), 𝐶𝑗(𝑥+))𝑛
𝑗=1  

         =
1

4
∑ 𝜔𝑗

𝑛
𝑗=1 (|(𝑢𝑖𝑗

𝑃 )
2

− ((𝑢𝑗
𝑃)

+
)

2

| + |(𝑣𝑖𝑗
𝑃 )

2
− ((𝑣𝑗

𝑃)
+

)
2

| + |(𝑢𝑖𝑗
𝑁)

2
− ((𝑢𝑗

𝑁)
+

)
2

| + |(𝑣𝑖𝑗
𝑁)

2
− ((𝑣𝑗

𝑁)
+

)
2

| + 

                                                                                          |(𝜋𝑖𝑗
𝑃 )

2
− ((𝜋𝑗

𝑃)
+

)
2

| + |(𝜋𝑖𝑗
𝑁)

2
− ((𝜋𝑗

𝑁)
+

)
2

|)  

                                                                                  𝑖 = 1,2, … , 𝑛                                        (4.4) 

 

Usually, the smaller 𝐷(𝑥𝑖 , 𝑥+) the better the alternative 𝑥𝑖 and let 

 

                                𝐷𝑚𝑖𝑛(𝑥𝑖 , 𝑥+) = min
1≤𝑖≤𝑚

𝐷(𝑥𝑖 , 𝑥+)                                                           (4.5) 

 

However, the alternative with the closest distance to bipolar Pythagorean fuzzy PIS may be not the farthest from bipolar 

Pythagorean fuzzy NIS. We denote the bipolar Pythagorean fuzzy NIS by 𝑥−, which can be determined by the following formula: 

                                                     𝑥− = {𝐶𝑗, 𝑚𝑖𝑛(𝑢𝑖𝑗
𝑃 )|, 𝑚𝑎𝑥(𝑣𝑖𝑗

𝑃 ), 𝑚𝑎𝑥(𝑢𝑖𝑗
𝑁 ), 𝑚𝑖𝑛(𝑣𝑖𝑗

𝑁)|𝑗 = 1,2, … , 𝑛} 

                                                                                                                            =

{(𝐶1, 𝑃 ((𝑢1
𝑃)

−
, (𝑣1

𝑃)
−

, (𝑢1
𝑁)

−
, (𝑣1

𝑁)
−

)) (𝐶2, 𝑃 ((𝑢2
𝑃)

−
, (𝑣2

𝑃)
−

, (𝑢2
𝑁)

−
, (𝑣2

𝑁)
−

)) , …, 

                                                                                         

                                                                                     (𝐶𝑛, 𝑃((𝑢𝑛
𝑃)−, (𝑣𝑛

𝑃)−, (𝑢𝑛
𝑁)−, (𝑣𝑛

𝑁)−))}                   (4.6) 

 

It is easily seen from Equation (4.6) that the obtained value of bipolar Pythagorean fuzzy NIS under each criterion is minimal 

among all the alternatives. Usually, in the practical MCDM process, there may not exist the bipolar Pythagorean fuzzy NIS. In 

other words, the bipolar Pythagorean fuzzy NIS 𝑥− is usually an unfeasible alternative, namely, 𝑥− ∉ 𝑋. Otherwise, the bipolar 

Pythagorean fuzzy NIS 𝑥− is the worst alternative of the MCDM problem, which should be deleted in the decision process. 

            Using this Equation (4.3), the distance between the alternative 𝑥𝑖 and the bipolar Pythagorean fuzzy NIS 𝑥− can be 

obtained as follows: 

 

                       𝐷(𝑥𝑖 , 𝑥−) = ∑ 𝜔𝑗𝑑 (𝐶𝑗(𝑥𝑖), 𝐶𝑗(𝑥−))𝑛
𝑗=1  

 

                             =
1

4
∑ 𝜔𝑗

𝑛
𝑗=1 (|(𝑢𝑖𝑗

𝑃 )
2

− ((𝑢𝑗
𝑃)

−
)

2
| + |(𝑣𝑖𝑗

𝑃 )
2

− ((𝑣𝑗
𝑃)

−
)

2
| + |(𝑢𝑖𝑗

𝑁)
2

− ((𝑢𝑗
𝑁)

−
)

2
| + 

                                                |(𝑣𝑖𝑗
𝑁)

2
− ((𝑣𝑗

𝑁)
−

)
2

| +    |(𝜋𝑖𝑗
𝑃 )

2
− ((𝜋𝑗

𝑃)
−

)
2

| + |(𝜋𝑖𝑗
𝑁)

2
− ((𝜋𝑗

𝑁)
−

)
2

|)          

                                                                                       𝑖 = 1,2, … , 𝑚                                                       (4.7) 

 

In general, the bigger  𝐷(𝑥𝑖 , 𝑥−) the better the alternative  𝑥𝑖 , and let 
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                              𝐷𝑚𝑎𝑥 (𝑥𝑖 , 𝑥−) = max
1≤𝑖≤𝑚

𝐷(𝑥𝑖 , 𝑥−)                                                                          (4.8) 

 

In the classical TOPSIS method, we usually need to calculate the relative closeness of the alternative 𝑥𝑖 with  

respect to the bipolar Pythagorean fuzzy PIS 𝑥+ as below; 

 

𝑅𝐶(𝑥𝑖) =
𝐷(𝑥𝑖 , 𝑥−)

𝐷(𝑥𝑖 , 𝑥+) + 𝐷(𝑥𝑖 , 𝑥−)
                                                                             (4.9) 

 

According to the closeness index 𝑅𝐶(𝑥𝑖), the ranking orders of all alternatives and the optimal alternatives  

can be determined. However, Hadi-Vencheh and Mirjaberi showed that in some situations, the relative  

closeness cannot achieve the aim that the optimal solution should have the shortest distance from the PIS and  

the farthest distance from the NIS, simultaneously. Thus, they suggested that one may use the following  

formula instead of the relative closeness index(i.e., Equation(4.9); 

                                               𝜁(𝑥𝑖) =
𝐷(𝑥𝑖,𝑥−)

𝐷𝑚𝑎𝑥(𝑥𝑖,𝑥−)
−

𝐷(𝑥𝑖,𝑥+)

𝐷𝑚𝑖𝑛(𝑥𝑖,𝑥+)
                                                                  (4.10) 

 

which is called the revised closeness used to measure the extent to which the alternative 𝑥𝑖 is close to the bipolar Pythagorean 

fuzzy PIS 𝑥+ and is far away from the bipolar Pythagorean fuzzy NIS 𝑥−, simultaneously. 

       It can be easily seen that   𝜁(𝑥𝑖) ≤ 0 (𝑖 = 1,2, … , 𝑚) and the bigger   𝜁(𝑥𝑖) , the better the alternative 𝑥𝑖 .If there exists an 

alternative 𝑥∗ satisfying the conditions that 𝐷(𝑥∗, 𝑥−) = 𝐷𝑚𝑎𝑥(𝑥∗, 𝑥−) and  

  𝐷(𝑥∗, 𝑥+) = 𝐷𝑚𝑖𝑛(𝑥∗, 𝑥+), simultaneously, then 𝜁(𝑥∗) = 0 and, obviously, the alternative 𝑥∗ is the best alternative that is 

closest to the bipolar Pythagorean fuzzy PIS 𝑥+ and farthest away from the Pythagorean fuzzy NIS 𝑥−,simultaneously. 

 

4.3 The algorithm of the Proposed method  

 

    On the basis of above analysis,  we present a practical algorithm involves the following steps: 

     Step 1:  For a MCDM problem with BPFNs, we construct the decision matrix 𝑅 = (𝐶𝑗(𝑥𝑖))
𝑚×𝑛

where the  

                   elements 𝐶𝑗(𝑥𝑖)  (𝑖 = 1,2, … , 𝑚, 𝑗 = 1,2, … , 𝑛) are the assessments of the alternative 𝑥𝑖 ∈ 𝑋 with  

                   respect to the criterion 𝐶𝑗 ∈ 𝐶. 

    Step 2:  Employ Equations (4.2) and (4.6) to identify the bipolar Pythagorean fuzzy  

                  PIS= {𝐶1(𝑥+), 𝐶2(𝑥+), … , 𝐶𝑛(𝑥+)}  and the bipolar Pythagorean fuzzy NIS  

                   = {𝐶1(𝑥−), 𝐶2(𝑥−), … , 𝐶𝑛(𝑥−)}, respectively.   

    Step  3:  Use Equations (4.4) and (4.7) to calculate the distances between the alternative 𝑥𝑖 and the bipolar  

                  Pythagorean fuzzy PIS 𝑥+ as well as the bipolar Pythagorean fuzzy NIS 𝑥− , respectively. 

    Step 4:   Utilize Equation (4.10) to calculate the revised closeness 𝜁(𝑥𝑖) of the alternative 𝑥𝑖 (i=1,2,…,m). 

     Step 5:  Determine the optimal ranking order of the alternatives and identify the optimal alternative.On the 

                  basis of the revised closeness 𝜁(𝑥𝑖) obtained from Step 4, we put the alternatives into orders with  

                  respect to the decreasing values of 𝜁(𝑥𝑖) (𝑖 = 1,2, … , 𝑚) and the alternative with the maximal revised  

                  closeness 𝜁(𝑥𝑖)  is the best alternative, namely.   

                                                             𝑥∗ ≔ {𝑥𝑖: (𝑖: 𝜁(𝑥𝑖) = max
1≤i≤m

𝜁(𝑥𝑖) )}                                                    (4.11) 

                             

5. ILLUSTRATION EXAMPLE 

 

          In this section, we consider a decision-making problem that concerns the evaluation of the cutting machine to illustrate the 

proposed approach . 

   Our aim is to provide support for decision makers regarding cutting-machine purchase in Erfe Shoe-Making Ind. Trade Co. Ltd., 

using TOPSIS method. The firm believes that purchasing a cutting machine will improve efficiency. The firm is considering 

offers from four firms, named A, B, C and D. Machine selection varies from company  

to  company according to the type of work done by the company, expectations from the machine, and the purpose of the machine 

will serve. In this regard, criteria affecting the purchase decision were determined after interviews with the vice general manager, 
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industrial relations expert and the foreman who will use. The criteria were identified as follows: Cost, service support, rate of 

waste, energy consumption. 

 

Table I. Bipolar Pythagorean Fuzzy Decision Matrix 

 
                             𝐶1                                          𝐶2                                       𝐶3                                         𝐶4       

                                         

 

        𝑥1    (0.9,0.3)(−0.2, −0.8)             (0.7,0.6)(−0.3, −0.5)          (0.5,0.8)(−0.8, −0.1)         (0.1,0.9)(−0.5, −0.3) 

        𝑥2    (0.7,0.4)(−0.6, −0.4)             (0.8,0.3)(−0.1, −0.7)          (0.9,0.1)(−0.7, −0.4)         (0.5,0.3)(−0.2, −0.5) 

        𝑥3    (0.6,0.1)(−0.8, −0.2)             (0.5,0.6)(−0.4, −0.5)          (0.3,0.6)(−0.5, −0.4)         (0.7,0.5)(−0.2, −0.8) 

        𝑥4    (0.8,0.5)(−0.2, −0.7)             (0.6,0.2)(−0.6, −0.1)          (0.2,0.8)(−0.6, −0.3)         (0.4,0.8)(−0.7, −0.3) 

 

  

 

5.1 Description 

        The weight vector of the criteria is given by the committee as 𝑊 = (0.50,0.25,0.125,0.125)𝑇.Assume that the 

assessment values of the alternatives with respect to each criteria provided by the committee are represented by BPFNs as 

shown in the bipolar Pythagorean fuzzy decision matrix given in Table II.  

 

                          𝐷(𝑥𝑖 , 𝑥+)                              𝐷(𝑥𝑖 , 𝑥−)                                𝜁(𝑥𝑖)                                                 Ranking 

 

 

        𝑥1               0.3431                                       0.2444                                 -0.5445                                                      4 

        𝑥2               0.2688                                       0.3338                                  0.0000                                                      1 

        𝑥3              0.3281                                       0.2934                                 -0.3419                                                      2 

        𝑥4              0.3450                                       0.2556                                 -0.5180                                                      3 

 

 

5.2 Decision Process 

         In the following, we use the bipolar Pythagorean fuzzy TOPSIS approach to solve the decision problem mentioned in 

Section 5.1.First, we utilize Equations (4.2) and (4.6) to determine the bipolar Pythagorean fuzzy PIS 𝑥+ and the bipolar 

Pythagorean fuzzy NIS 𝑥− , respectively, and the results are obtained as follows: 

𝑥+ = {𝑃(0.9,0.1, −0.8, −0.2), 𝑃(0.8,0.2, −0.6, −0.1), 𝑃(0.9,0.1, −0.8, −0.1), 𝑃(0.7,0.3, −0.7, −0.3)}         

𝑥− = {𝑃(0.6,0.5, −0.2, −0.8), 𝑃(0.5,0.6, −0.1, −0.7), 𝑃(0.2,0.8, −0.5, −0.4), 𝑃(0.1,0.9, −0.2, −0.8)} 

       Then, we employ Equations (4.4) and (4.7) to calculate the distances between the alternative 𝑥𝑖 and  bipolar Pythagorean 

fuzzy PIS 𝑥+ as well as the bipolar Pythagorean fuzzy PIS 𝑥− ,respectively.The results are shown  in Table III.Moreover, we 

utilize Equation (4.10) to calculate the revised closeness 𝜁(𝑥𝑖)  of the alternative 𝑥𝑖, and the results are also listed in Table 

III.According to 𝜁(𝑥𝑖), we can obtain the ranking of all alternative as shown in Table III. 

          It is shown in Table III that the optimal ranking order of these four major cutting machines is 𝑥2 > 𝑥3 > 𝑥4 > 𝑥1, and 

thus the best alternative is  𝑥2, namely, B Firm. 

6. Conclusion 

           TOPSIS method is the one of the classical decision-making methods for solving the MCDM problems with crisp 

numbers, which has a simple computation process, systematic procedure, and a sound logic that represent the rationale of 

human choice. In this paper, we have developed the TOPSIS method to deal effectively with the MCDM problems with 

BPFNs. We have defined distance measure for BPFNs and discussed its properties .We have developed a simple and effective 

decision method to solve the MCDM problem with BPFNs. 
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