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Abstract :    Numerical evaluation of derivatives of fractional order 1  , 10    has been considered by applying a four point 

approximation formula meant for derivatives and the technique of numerical evaluation of integrals of fractional orders  . 
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I. INTRODUCTION 

 

In recent years the subject fractional calculus has been found immense and wide applications in different branches of science and 

engineering, some of which have been highlighted in Oldham and Spanier (2006) and Dalir and Bashour (2010). Due to its immense 

applications, the numerical treatment of this subject has been drawing more and more attentions. Some of the numerical techniques developed 

for the evaluation of integrals and derivatives of fractional orders are due to Lether et al. (1982), Diethelm and Walz (1997) and Acharya et 

al. (2011). 

 

       Acharya et al. (2011) have considered the numerical evaluation of integrals of fractional order  , 10    , denoted as )(xfD 
 

and given by  
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The definition of integral of fractional order   specified by equation (1) is in the Riemann-Liouville sense. 

In this paper we consider the numerical determination of the derivative )(1 xfD 
 of  fractional order 1 which is given by    
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where the function )(xfD 
 is  differentiable. 

 

 

II. NUMERICAL APPROXIMATION OF DERIVATIVE OF FRACTIONAL ORDER  

 

      It is pertinent to note that the numerical evaluation of the derivative of fractional order 1 , involves the integral of fractional order 

  which should be evaluated numerically as accurately as possible.  For an accurate numerical evaluation of the fractional integral 

)(xfD 
, Acharya et al. (2011) have applied n-point Gauss-Legendre quadrature rules or Radau n-point rules along with corrective factors 

)(xCr   of order 5r  which is prescribed as  
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The corrective factor )(xCr  in conjunction with the quadrature rule yields the approximation for )(xfD 
 in the following form:  
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where )(, nQ   is either the n-point Gauss-Legendre quadrature rule or the n-point Radau rule meant for the numerical approximation of  

fractional  integral )(xhD 
 i.e. 
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where  
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For the numerical approximation of the derivative of )(xfD 
 we require the numerical approximation of the fractional order 

integral )(xfD 
 at a certain set of points. So it is pertinent that the fractional order integral at the required set of points ought to be found 

out as accurately as possible.  For achieving this the order r of the corrective factor )(xCr  and the index n of the Gaussian quadrature rule 

)(, nQ   should both be reasonably large such that the accuracy ultimately obtained is acceptable. 

So far as the approximation formula for the numerical evaluation of the derivative )(xg
dx

d
 of a differentiable function )(xg , is 

concerned the following 4-point approximation formula is considered: 
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where the order of accuracy of the formula given by equation (7) is )( 22tsO  and the positive numbers s and t are appreciably small and 

different. 

 

Thus the technique of numerical evaluation of fractional derivative  )(1 xfD 
 of order 1  consists of the following steps. 

i. The variable x in equation (1) and (4)-(7) is replaced by  sx   and tx   for obtaining the values )( sxfD   

and  )( txfD   assigning suitable values of n (the index of the rule), r (the order of the corrective factor) 

and the parameter s and t. 

ii.  The computed results obtained in step (i) are substituted in the approximation formula given by equation (7) which yields the output 

)(1 xfD 
 to a desired degree of accuracy. 

 

 

 

III. NUMERICAL TESTS AND CONCLUSION    

 

    The following derivative of fractional order 2/1  (semi derivative) is considered for conducting the numerical test. 
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for which the exact value is )(/1 xerfex x  [ Ref. Oldham and Spanier (2006)]. The parameters s and t are assigned the values 

s=0.0005 and t=0.0008 and the four semi integrals of the function exp(x) at the four points  sx   and tx   have been found out for 

4.0x  and 8.0x . The evaluation of the required semi integrals have been performed by using Gauss-Lengendre and Radau quadrature 

rules of index n=4, 5, 6 and the order of the corrective factor )(xCr  is 8r .  The computed results have been appended in Tables 1 and 
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2. Table-1 depicts the evaluations by the Gauss-Legendre rules and Table-2 depicts the evaluation by the  Radau rules which are denoted as 

8CQGL

n    and 8CQR

n  respectively. 

 

        The notation Error  in the tables indicates valueexact)(2

1

xeD . It is observed from the tables that both the rules have almost 

the same accuracy. Further if the index n of the rule )(nQ  is raised from 4 to 6, then the accuracy is improved. However, if n is relatively 

less then for maintaining the accuracy the order of the corrective factor i.e. r  should be large. For 1x  the values n=6 and r=8 yield results 

of appreciable accuracy.  

   Table-1 

 

Rule x )(2

1

sxfD 


 )(2

1

txfD 


 )(2

1

xfD  
Error  

84 CQGL   0.4 
0.93913367360970 0.93968289754039 

1.83028050143319 131012.4   
0.93730339290374 0.93675444790158 

84 CQGL   0.8 
1.76849419627261 1.76921400960899 

2.39807803642117 101015.2   
1.76609611712190 1.76537708428257 

85 CQGL   0.4 
0.93913367360968 0.93968289754037 

1.83028050193223 131051.5   
0.93730339290372 0.93675444790156 

85 CQGL   0.8 
1.76849419525529 1.76921400959161 

2.39807803620468 131004.6   
1.76609611710479 1.76537708426553 

86 CQGL   0.4 
0.93913367360968 0.93968289754037 

1.83028050193259 131086.1   
0.93730339290372 0.93675444790156 

86 CQGL   0.8 
1.76849419525531 1.76921400959163 

2.39807803620532 141030.4   
1.76609611710481 1.76537708426556 

 

( computations by Gauss-Legendre 4-point, 5-point and 6-point rules ) 

Table-2 

 

Rule x )(2

1

sxfD 


 )(2

1

txfD 


 )(2

1

xfD  
Error  

84 CQR   0.4 
0.93913367360944 0.93968289754013 

1.83028050192690 121087.5   
0.93730339290349 0.93675444790133 

84 CQR   0.8 
1.76849419501617 1.76921400935158 

2.39807803319143 91001.3   
1.76609611686869 1.76537708403033 

85 CQR   0.4 
0.93913367360968 0.93968289754037 

1.83028050193263 131042.1   
0.93730339290372 0.93675444790156 

85 CQR   0.8 
1.76849419525502 1.76921400959134 

2.39807803620236 121092.2   
1.76609611710452 1.76537708426527 

86 CQR   0.4 
0.93913367360968 0.93968289754037 

1.83028050193245 131025.3   
0.93730339290372 0.93675444790156 

86 CQR   0.8 
1.76849419525531 1.76921400959163 

2.39807803620477 131007.5   
1.76609611710481 1.76537708426555 

 

( computations by Radau 4-point, 5-point and 6-point rules ) 
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