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Abstract : The most prioritized topic while studying univalent analytic function is the Riemann mapping theorem. In this communication,
we introduced ‘S’ be the class of function fin H that are univalent in D. A new subclass of S*-starlike functions of order a is studied in this
paper. Some of the properties of these $*-starlike function with negative coefficients including the starlikeness, univalence are reflected.
Some other aspects such as integral transforms , quasi-hardmard product functions are discussed. Various examples are provided to study the
results of negative coefficient functions of order %.
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. INTRODUCTION

The concepts of analytic function and univalent are heavily used in mathematics. The function f which is a complex valued by
nature is said to be analytic in a domain € (a nonempty open connected subset) if it has a uniquely determined derivative at each point of
Q. The function f is defined as univalent in a domainQ, if it never takes any value more than once, that is, the condition f (z,) = f (z,) »

z,,z, € Q implies z, = z, .A necessary condition for an analytic function f to be univalentin Q is f'(z) =0inQ. This condition is
not sufficient which can be seen by considering the function f (z) =exp(z) whose derivative never vanishes. But clearly it is not univalent
in C. The Riemann mapping theorem states that if Q is a simply connected domain whose boundary consists of more than the point and Z,

is a point in Q then there exist a unique univalent analytic function f which maps Q conformally onto the unit disc D = {Z eC: |Z| <1} ,

and the properties f(z,) =0 and f '(ZO) =1 While studying geometric properties of functions univalent and analytic in a simply connected
domain Q with more than one boundary point one may therefore confine, without loss of generality, it is enough to consider functions analytic

and univalent in the unit disc D. If the function f (z) = (g(Z)EE;(O)) since g'(0) = Othen g is analytic & univalent in D. So, considering
9g'@
f in Das univalent analytic function which satisfies f (0) =0 and f'(0) =1. Let H be the class of functions f analytic in D and normalised
by the conditions f (0) =0 and f'(0) =1, and let S be the class of function f in H that are univalent in D. The Taylor series expansion of
such a function f about the origin has the form

f(2)=2+) a7 )

Unless otherwise stated explicitly, it is assumed throughout in the sequel that whenever f < S, isin Taylor series representation of the form
(1). The koebe function k(z) = z(1—z)™* which maps the unit disc D onto the entire complex plane minus the part of the negative real axis

JA
from 1/4 to infinity is theleading example of a function in S. A few illustrative of such functions in S are Z, (1 Z)_l and log 1+z.
- 2 71

In the univalent function theory was initiated by koebe [13] in 1907 on the uniformization of algebraic curves. He discovered that

the ranges of all functions in S contain a common disc [\N| <b, where b is an absolute constant. The koebe function K(z) = z(1- Z)f2

1
shows thath < % Bieberbach’s [2] establishes thatbh = rh He also proved in the same paper that if f < S then |a2| <2 with equality

occurring iff f is a rotation [g(z) =e’f (emZ)] of the koebe function. Motivated by these extremal properties of the koebe function,
Bieberabach conjectured that forever
F(z2)=z+) a,z €5a,<N,n=23,.... @
n=2

Equality occurs in (2) for each'N’, iff, f (z)is the koebe functionk(z) or one of its rotations [g(Z) =€’ f (€'°Z)]. Recently,
Bieberbach’s conjecture has been proved in affirmative [2]. Whenever there is no ambiguity, we will use term univalent functions in the
sequel for analytic univalent functions. This section contains some definitions and result concerning the class S and some of the subclasses
of S that are needed in the sequel. Bieberbach’s inequality |a2| < 2 has further implication in the geometric theory of conformal mappings.

Indeed, any transformation that carries a function of H into another functionin H  will give some expression for the second coefficient
to which we can apply this bound. One important consequence is that the class H there is a limit to the distortion of the boundary, stated
by the Koebe distortion theorem. The following results give a basic estimate which leads to the distortion theorem and related results.
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Theorem 1.1 Let Z=re'’(r <1). Then,forevery f €S,

|zf”(z)_ 2r? |<
| f'(z) 1-r?| 1-r? 3)

Using (3), the following theorem can be established.
Theorem1.2 If f €S, then

1-r 1+r
(1+r)? | (@ )| (1 r)? @)
and—— <|f(z), <
(1+ r)? (1 r) 5)

These inequalities are appropriate. Equality occurs at each extreme, iff, f is a suitable rotation of the koebe function. We shall now discuss
the properties for functions with positive real part in D . Let’s consider P be the class of function p(z)is analytic with positive real part in
D andp(0) = 1. The function p(z) can’t notbe univalent. In the study of the class S, the koebe function plays a crucial role.

q(z) = 12 _1+2Zz
(6)

In the study of the class Carathedory [3] proved that the coefficients of p(z) satisfying| pn| <2,n>1, which is sharp for q(z). Easily we
can proved thatif p(z) € Pand z=re'". then

1-r

L <fp@)< T an o) <

1-r)° %

These inequalities are appropriate. Equality occurs, iff, P(z) = q(€'“Z) for some real o . A simple geometric argument in [5] shows that if
p(z) e P, then it satisfies the inequality

@ )_1+ r 2r 3
P 1-r? (1 r? ®)
Again equality occurs for ¢(e'“z) for some real o . Goluzin [5] proved that if p(z) e P, then
zp'(2) < 2r
p@) | @-r)?’ ©)
For which we obtain e rZP (Z)} 2r__ 1t can also be proved that |p”(z)| < 4 - Further, let p(c) denote the class of analytic
p(2) L-n?

functions with p(0) = 1 satisfying Re{p(z)}> a (0<«a <1), zeD. This class of functions was studied by Liberal and Livingston
[9].Closely related to P is the class Q of all functions f (z) € H whose derivative has a positive real part.We denote the class of convex
function by C. An analytic characterization for a function f in H to be convex is due to Robertson [10]. Thus, a function f in H s
convex, iff

Re{z+z ))}>0 zeD. (10)

F'(
f'(z
The function f e H is said to be convex of order (0 < x,1) iffor ze D.

zf "(2)
f'(2)

Re{l+ }>0,z¢ D. (12)
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Itiseasilyseenthat C(0)=C,C(a) cC,0<a <1 and C(Q) ={z}.If F(z)=2+ Zanz” , then it is known that [5] a necessary

n=2

condition for fto be in C is|an| <1, n =23, ... With equality occurring for the functions f (Z) = Z(l— Z)_l. A sufficient condition for f to
be in Cis that S n2[a | <1 If f(z)= Z:anzn is in C then Trimble [20] proved that
’ n=2
2
la," —a,| <1/3(1-[a,). W)
The bound in (12) is an improvement on the bound of ‘azz —ag‘ for f e C obtained earlier in [8] and [15]. A domain Q in the complex

plane is said to be starlike with respect to the point w, e Q if the line segment joiningW0 € Q) to every other point W € Q entirely inQ).

Definition 1.1 A function f e H is said to be starlike with respect to the point WO if f maps D onto a domain that is starlike with respect
to the pointWO. S " be the class of starlike functions with respect to the origin . It is observed that C < S. The containment is proper since
the koebe function K(z)=2(1—2)? is in S* but not in C. Robertson [10] proved that a function f € H, iff,

2'(2)y _
Re{——}>0;z¢D.
e{ Q) }>0,z¢ )

A function f € H is said to be starlike of order (0 < a <1) if

’

Re{Z: Z)}> a;zeD.
z

(2) (14)

Denote by S * (cr) , the class of starlike functions of order ¢« . It follows that S + (0) = S *,S"(0) € S",0< @1 and S™ (1) ={z} .The

inequality (4) and (14) reveal a close connection between starlike and convex functions. That is a function f e C(«) iff 7" (Z) eS” (a)

for 0<a<l If f(z)=z+ Z:atnzn then a necessary condition for fto be in S™ is that [4]

n+2

la,|<n,n=23... (15)

The inequality (15) is intence for the koebe function K(z) =z(1—z) . Let f(z)=1z +ian2” be defined in D. 'fZ‘an‘” <1thenf (2) in

n+2 n=2

S*. A natural conjecture of starlike leads to the class of spiralike functions, which gives a useful criterion for univalent. A logarithm spiral
is a curve. In the complex plane of the form W =W,e ™" (—co <t <o), where W, and 4 are complex constants with W, =0 and

Re(A) =0. If we take A = e with - /2 < /2, the curve is called « - spiral. For which & (| & | < 1/2) there is a unique ¢ - spiral which
joins a given point W0 =0 to the origin.

A domain D containing the origin is said to be « - spiral like if for each point W0 =0 in D are of the L-spiral from W0 to the origin

lies entirely in D. A function f analytic and univalent in the unit disc, with f(0) = 0 is said to be « -spiral if its range is « -spiral if its range
is « spiralike, 0-spiral function are simple the starlike functions. A slight modification of the condition for starlikeness characterize o spiral
functions, which is also a sufficient condition for univalence.

Theorem 1.3 Let f e H and|a|< /2. Then, fisa « spiral in D iff

i 2f'(2z
Re{e'“J}>O ;z2e D (16)
f(2)
These functions are introduced by Spaik [8]. Libera [15] introduced the class of « - spiral functions of order P(0 < p <1), denoted by
o 2f'(z
S(«a ,p), by changing the condition (16) to Re{e' T())} > PCOS &r; z e D. Inaddition to other results, be found coefficient estimates
YA

for such functions thus, it was proved thatif f € S( «,P),p then
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& 2(1-p)cosae™ +k |
la,| < kzz(; 1 ‘forn 23... (17)

holds, and that equality occurs for the function f (Z) = z(1—z) 2%« ®Ci9) 1t can be noted that S ,0) is the class of « - spiral
functions.

Another incredible subclass ofS in which S is the class which is close —to-convex functions. In the unit disc, the function f is
analytic by nature and is said to be close-to-convex [19], if there is a convex function ¢ such that

Re{ ¢(( ))} 50, 2¢D. (18)

We denote K be the class of close-to-convex function is univalent, it may be observed that C = S™ < KS. However, a close-to-convex
function need not be « -spiral. Let f(z) be defined by (1) and let P(a) be the class of functions of the form f(Z) which satisfy

Re{ﬂ} > o inD and Q(a ) be the class of functions f(z) which satisfy Re(f'(z)) > « for ze D. We observe that f(z) € Q(«)
YA

iff zf'(z) e P(a) for 0<a <1.
The univalent analytic functions of class S has been studied widely. The main focus in this areaconcentered on determining the
estimates of coefficients and also the estimates for‘ f (z)‘

s is conjecture. Namely |an| <n for n=2,

3.... Many part of workers attempted to investigate various subclasses of the class of univalent functions. Among such subclasses, ‘T’ be the
class of functions whose non zero coefficients, whose the second on, are negative, that is, an analytic univalent functions f is in T iff it can
be expressed in the form

f(z) = z—ianz”(an > 0)

In 1975,H. Silverman considered a subclasses of T comprised of polynomials having |z|=1 as radius of univalence. For this class, he
obtained a necessary and sufficient condition in terms of the co-efficient and with the conformal mapping of univalent functions. According

Silverman [16] , co-efficient inequalities, distortion and covering theorems for the subclasses S * («) and C * (&) of T, the class of
starlike functions of order ¢ and the class of functions of order a respectively. Let P * (o) and Q * (&) denote the classes obtained

by taking intersection of P(cr) and Q(a) with T, thatis, P * (o) =P(a) " T and Q" (@) = Q(a) N T.

1. A SUBCLASSES OF STARLIKE FUNCTIONS WITH NEGATIVE COEFFICIENTS
Let’s consider A be the class of function of the form

f(z):z+iakzk (19)
k=2

which are analytic in the open unit disc U={z :| z|<1}. Further, consider S be the class of all functions in A which are univalent in U. Let

S*(a),(0 < a <1) be the subclasses of functions in S which are starlike of order ¢« .Analytically; f € S* () iff f is of the form (19) and

satisfies Re{Z: (Z))}>a (ze V).

Similarly f € C (a); iff, f is of the form (19) and Re{l+ (( ))} a (ze U). Now for f € C(a) we have
zf "(2)
f'(z)

< zf ")(z zf "(z
f'(z)=z+ Z:kakzk .Therefore, z-fis of the form (19). Again, Re{———— 2@zt X( )} =Re{l+— (2)

k=2 zf'(z) f'(z)
forzZf € S™ (), we can easily found that f € C (¢ ). Thus, we have f € C(a) iff Zf € S (&) 'S and we note that the function f is in
S is a starlike function of order & (0 < <1) and type f (0< B <1) , if it satisfies;

f(Z)=Z+Zaka ; For some suitable @,'S and Re{l+ >a  (ze U). Now, f’(z):1+2kakzk‘1 implies
= k=2

}>a (sincefisinc (a)). Also,
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[zf @)

oY
@ ) <B(zel)

4@ |4
f(2) (20)

Denotes the class of such functions f that are in S and satisfies (20) by S (&, ) . S (&, f3) is called as the class of starlike functions of
order o and S .Further,f € S isin C («, 3) denotes the class of convex function of order & and S iff f e S(«, /) .We observe that
S(a,1) =S (@) be the class of starlike functions of order ¢ and S (0, ) be a subclass of starlike function according to Padsmanabhan
(1968). Further f € S isin C (¢, f3) , the class of convex function of order  and type /£ ifand only if f e S («, /) .We denote that
S (a,1) +S"(a), the class of starlike functions of order « and S (0, ) is a subclass of starlike function studied by Padsmanabhan
#(2) lie in a disk centred at M and whose radius is M.
z 1—ﬂ2 1— ,6,2

Let’s consider T be the subclass of S comprised of functions whose non zero coefficients from the second on are negative, that is an analytic

(1968). Further f € S (e, ) : (0< B <1) the values of ———=

and univalent function is in T iff it can be expressed in the form f (z) = z — Zak 2" . Wedenoteby T"(a),c"(),S"(a,B),andC
k=2

“(a, ) . The classes obtained by taking intersection of the classes T “(ct) , C " («¢), S™(«, ) and C™(«, 5) , respectively. The classes

T (a) & C " () , and were introduced and studied by Silverman (1975) whereas the classes S * (¢, 3) and C* (&, ) and were introduced

and studied by Gupta and Jain (1976). These classes possess many unigue properties and also been derived by Silverman and silvinia (1979),
Owa (1983), Kumar (1987) and others.

The objective of this t section is to provide more general class T~ (&, ) of analytic univalent functions involving Ruschewegh’s
derivatives, and then extent some of the results of Silverman (1975), Gupta and Jain (1976) to the class T : (a, ﬁ) . We also study some
other aspects such as quasi-hadamard product and integral transforms of functions in T " (a, ﬁ) . By proper choices of n, @ and [ we get
the corresponding results for the classes T () , S* («t, 3) , and its allies classes.

2.1 A general class T (&, 8) of analytic univalent functions

We begin with definition of the class T * (a, ﬁ) in this section and deals with the determination of sharp coefficient estimates and

comparable results for the class T (¢, £3) .
Definition 2.1.1 The function f is said to be in class T (&, ) ; n=0, 1, 2... if it satisfied the condition.
‘ (D" (2)) _

D'f (z)
2(D"f (2))’

D'f (z)

<pB(zel)
+(1-2a)

1)

Forsome a(< ax <1); (0 < B <1) andwhere D" f(z) = (Zl f(z) (here* denotes the convolution of two analytic functions;
(1_ )n+

be the Ruschewegh’s derivative of f (z). If T (2) =z — Zak z“(a, >0) thenD"f(2) = Z (nl;_(: i'))' . Taking D we have
k=2 n
D"f(z) =z-) 8(nk)az" . (22)
k=2

Thus D°f(2) and D'f (2)zf '(2) . Setting n=0in (21) we have T " o (r, B) be the class of functions f e T satisfying
#'(z)
f(z)
2f'(z)
+(1-2a
f( ) +( )
o(a, B) reducesto C" o (, B) We denote T."(¢,)) by T. (cx) which coin die with the classes T “(e) and C"(cx) for

< BzeU)’ Clearly by (2.1) we have fis inS"(a, ). Thus T o(a,f) reducesto S*(a,/3) and similarly

n=0 and n=1. It will be shown in this sectionthat T."(y, ) =T, (a, B) =T () forand 0<a <yl and n=0, 1,2...Now we

are going to prove the following coefficient inequalities for functions belonging to the class Tn* (a,l) .
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Theorem2.1.1 Let f(z)=z —Z:akzk (a, >0).BeanalyticinU, then f T “(a,f), iff
k=2

S KA+ f) - (U B + 2af)}x 5(n.K)a, <26(1-a)
= (23)

(n+k—1)

where 0(nN, k) = —————=the result is sharp.
(n)(k =1)!
Proof. Let f(z)=z2 —Z:akzk (@, >0) isin T, (a,B) Therefore forall Z € U we have
k=2
‘ 2D () 4
D'f (2)
n. ’ < ﬁ
2D (1 o)
D'f (2)

S (k-15(n,k)a, 2"

which implies < pB(z€U)
2(0-a)z- Y (k+1-2a)5(n,k)a, z"
k=2
. (D" (2)) .
Now choose the value of z on the real axis such that _ is real .
D"f (z)

Therefore Z(k ~1s(n,k)a, 2 < B2(l-a)z - Z(k +1-2a)d(n,k)a, z* . Letting Z — 1 through positive values we obtain
k=2 k=2

Z(k -Do(n,k)a, < f21—a)— Z(k +1-2a)o(n,k)a,

k=2 k=2

Which implies > {(k + 8) — (1— S+ 2ap)}5(n,K)a, <2B(1-a)
k=2
Conversely, let (23) consists for all admissible values of & & 3 , the expression can be derived as

#(f)=|2(D"f(2))' — (D" (2))| - Bz(D" f (2))' + (1—20)(D" f (2))

Onreplacing D"f(z) and D"f(z)" by their Fourier series expansions in the above equations, we have for [z|=r<1,

#(F) =3 (k-D(n.K)a 2"~ | f2(-a)z -3 (K +1-2a)5(n,K)a, 2* |

<3 (k-13(nK)a,r* - ARA-a)r -3 (k+1-2a)5(n, K)a,r'}

0

= > {k@+ ) - (1- B+2aPY¥(nk)a,r" —2p(1-a)r

k=2
Since the above inequality holds forall r; O < T <1, letting ' — 1 ,we get

#(f) < i{k(1+ B)-(A=p+2ap)}5(nk)a, —26(1-a)<0

By (23). Hence in view of (2.1), it follows that f € T." (cz, B) . The result is unique, the external function being given by

f(2)=z2- 2pl-a) (k> 2) (24)
[k@+ B)-(A-B+2ap)]5(n,k)
Corollary2.1.2 If f(z)=1z2 —i:akzk isin T"(a, B); thena, < 2p(=a) “(k >2)

K@+ f)— Q- B+ 2aP)l6(n.K) "
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With equality for each K, for functions fk (2) given by(24). Setting n=0 and L =1 intheorem 2.2.1, we get the following result of
Silverman (1978).

Corollary 2.1.3 Let f(z) = Z—Zakzk beanalyticinU. Then f eT"(a) iff
k=2

Y (k-a)a, <(1-a)

(25)
Thus result is unique.

Remarks 2.1.4 Putting n=0 in Theorem 2.1.1 and Corollary 2.1.2, we get a result of Gupta and Jain (1976) which in turn leads to Silverman’s
result (1975) for B =1.

Remarks 2.1.5 Sincefor 0<a <y <10< f <1 andn=0, 1,2....

k—a < [k@+ B)- Q- B)+2ap]o(n,k) - [k@+ B)—@Q-B)+2apb]o(n,k)

l-a 2(1-a) 20@0-7y)
It follows from Theorem 2.1.1 and Corollary 2.1.3that T." (7, 8) (T, (&, B) T* () ) for 0< x < y <1 andn=0, 1,2...
Using the co-efficient inequalities in Theorem 2.1.1, we proved the follow comparable results.

Theorem 2.1.6 Forn=0, 1, 2...., we haveT ( T, (a, B) ) T, (7, B) where
1+38+(n+D)a+(n-Dap
n+2+(+4)p-2ap

y=y(a, p,n)=
Thus the result is most favourable.

Proof . Suppose f(z) =z — Zak r eT = ., (a, ). Then by theorem 2.1.1 we have
k=2

i [k@+B)-@A-B+2ap)5(n+1k)a, <1
k=2 2(1-a) (26)

Toprove that f € T."(, B) , we must show that

i [k@+B)-(1-B+2ap)5(nk)a, <1
2 2B(1-7) )

Thus (27) will be satisfied if

[k@+ ) -A-F+2y8)16(nK) _[kA+f) -~ F+2af)](6(+1K)k 22) 28)
1-y l-a

We shall show that the right hand side of (28) is an increasing function of K .This will be true if for n=0, 1, 2...
(k) =(n+k+DKk -DIk +DA+ p) —A-B+2aP)]- (n+K)KI(kA+ B) - (1- S +2ap)]
+2n+)(1- )
is non-negative, which is certainly true as ¢, (z) = k(k —1)(L+ £) > 0 for k=>2. Since the right hand side of (28) is an increasing function
1+38+(n+)y+(n-Dap
n+y+(n+4)8-2ap

of k, putting K = » in (28) we reduce that y <

This proves the theorem.

The result is unique and the external function being given by f(z) =z — 2pd-a) z% Putting n=0 in Theorem (2.1.6) we get
(n+2)(L+36-2ap)

the following inclusion relation which coincides with a result of Silverman (1975) for  =1.
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1+a+38-ap
yA+28-ap)

Corollary 2.1.7 For 0<a <1 and0< £ <1 we have §'(a, 8)=S"(y, ) Wherey =y(a, B) = . The result is best

possible.
2.2 Integral transformation of functions in T, " (ct, /3)

This particular section narrates that integral transformers of functions in Tn* (a, ,B) of the type consider by Bernardi (1969).

Theorem2.2.1 If f €T, "(a, /), then the integral transformers

F ()=t (Z) toL £ (t)dlt 29)
Z

are int’ (@), where X = X (a, B,¢,) = (n+)(c+2)A+p)+2(2n+nc—c)p(l-a)

’ M (n+D(c+2)A+B)+2(2n+nc+)pl-a)
3p(l-a) 72
(N+1)A+38-2ap)

The result is appropriate for the function f (z) =z —

Proof. Suppose f(2)=1z —Z:akzk eT * (a,p)
k=2

= Cc+1 K

o = (k—A)(c=1)
In (25) it is sufficient to show that f(2)= ) ———— = — =
n (25) it is sufficient to show that f(z) kzz;d(]__/l)(c+k)

_ i [k@+p)-A-f+2ep)5(nK)a, _,

2p(1-a) -
Thus, the objective can be satisfied if
(k=2)+D) _[kA+p)-(A=F+2aPMK) \ 5
(c+k)@-A4) 20(1-«a)

J< (c+k)o(n,K)k@+ p)—-A- g +2ap)]-2k(c+1)p(1l-a)
~ (c+k)s(n,K)k@+B) - (- B+2aP)]-2B(Cc+)(1-a) (30)

We shall prove that the right hand side of (30) is an increasing function of k. This will be true if for n=0, 1, 2....

a, <1.For f €T "(a, ), we have by Theorem 2.1.1

or

6, (K) = (k =1)(c + k +1)5(n,k + D{(K + )L+ B) — (1— B) + 2a )} k(c + K)S(n, k){k 1+
B)- (- B+2ap)}+2B(5 +D)(1-a) 20 a

Now for n=0,(31) becomes

¢, (K) = (k=D +k+D{(k +D)A+ B) - (1= p) + 2af)}-k(c+ K){k(1+ ) - (1~ S+ 2a/3)}
+20(0+)(1-a)

=k(k-1)(1+ )>0

Theorem 2.2.1 gives thatif f T "(0,1) then the Libera transform F,(z) = % ¢Z f(t)dt isin T"(3n+1/3n+2)

n
From this it follows that if f e T*(0) then F, € (1/2) and f  C"(0) impliesthat F, € T *(4/5) . Also from the recursive
formula

(+1)d. ., (K)(N+K)g. (k) + (k —1)(Cc +k + 15N, k +1)
{(k+DA+B)— (- f+2af)}—2(k -D(Cc+1)SL-a):n=012.... @)

we obtain

(n+k)g, (k) <(n+1)g,(k);n=012... (33)

From (32) and (33), (31) follows. Hence the right hand side of (30) is an increasing function by putting k=2 in (30) we get,
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X < (n+D(c+2)Q+p)+2(2n+nc—-c)f(l- )
(n+Y(c+2)A+p)+2(2n+nc+1)f(l— )
This complete the proof. Setting n=0 in Theorem 2.2.1,we get the following result.
Corollary 2.2.2 If f € S™(, B); then the integral transformers F, (Z) defined by (2.3.1) are in T *(4,);

(c+2)1+p)-2cf(1l-a)
where, A =A@ i) = s B 250 )
Taking n=1 in Theorem 2.2.1, we have '
Corollary 2.2.3 If f €C"(a, f); then the integral transformers F,(Z) defined by (2.3.1) are in T*(4,);
(c+2)d+p)-2p1-a)
c+2L+ P+ pLL-a)(c+3) _

Remarks 2.2.4 It is interesting to note that for c=1 and (e, ) = (0, 1).

Where A4, = A, (a, f,C) =

2.3 Quasi — Hadamard product for functions in T, (&, 3)
Let f(z2)=2z- Zak z¥, a, = 0. Then their quasi — Hadamard product (f*g) (z) is defined by (Kumar 1987, Owa 1983)
k=2
(f*x9)(z) = f(2)*9(2) =z~ a,b, 2"
The following results for functions can be shown inT." (a, /3) .

Theorem 2.3.11f f(2) =z —Z:akzk and g(z2)=z- Zbkzk arein T "(a, B), then the quasi-Hadamard product
k=2 k=2

(F9)@)=7- Zakbk 2“eT. (y,B), where
k=2

(N+1)2(1+38-2ap)? —2(n1+2)B1L+38)(L- )’

= , 1n =
) P U 38 - 2Py — 4+ 2 ) a0
The best possible result for the functions f(z) = g(z) =z — 2p=a) z7°
(n+2)A+34-2ap)
Proof. Suppose f(z) and g(z) are in Tn* (a, ﬂ) . By taking reference to Theorem 2.1.1 we have
i [k@+B)-A-pg+2ap)]o(nk)a, <1
k=2 2p(1-a) (35)
And i [k@+p)-@A- g +2ap))o(nk)a, <1
k=2 Zﬂ(l - 7) . (36)

Since f(z) and g(z) are analytic in U, So is f(z)*g(z).Further,for 7 defined as in (34), and (35) and (36) we have
o0 _ _ 2
3 LCTD R G AS70) JURSH Y
k=2

2p(L-a) -
- i [kL+ B)— (- S +2aP)]5(n+1, k)2a
= 2p(1-a) k

Therefore, by Theorem 2.1.1 f(z)*g(z) belongsto T “n(n+1) (¥, ), where ¥ is given by (34). This completes the proof of the theorem.
Putting n=0 and /3 =1 in the previous expand theorem, we deduce the following result.

Corollary2.3.21f f(z)=z— Zak z¥andg(z) =z - Zbk z* areelementsof T " () thenh(z)=f(2)*g(z) = Z — Z:akbk z* isan
k=2 k=2 k=2

(4-3)

elementof C*(7), wherek=2and 7 =
() /2 a)
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emarks Z.o. rom aresult o umar ,p.7o,1heorem , We note that If f(z) an g(z) are In ) ), then g)(Z isin : o).
Remarks 2.3.3 F It of Kumar (1987,p.73,Th A), W hat if f(z) and in T, hen (f* C

However, Corollary 2.3.2 shows that if f(z) and g(z) are in T* (&) then (f*g)(z) belongs to C*(4a —3a/2—a)’since

4-3a)a
% € c(a) .Thus, we observe that the class to which the quasi-Hadmard product belongs, determined by us is much smaller than

that obtained by Kumar (1987).From this follows that our result is more inclusive and applicable and thus improves the result of Owa (1983)
and Kumar (1987).

Theorem23.4 If f €T (o, B); andg €T, . (o, B)ithen f7geT (o, B); where

(N+DA+38-2ap)? -2p1+3p)1-a)?
(N+D)(1+38-2ap)* —-4p*(L-a)®

y=y(a,B,n)=

Thus result is possible for the functions
f(z)=z- 2p(1-a) 22 andg(z) =z — 2p-a) z?
(n+D)@A+38-2ap) (n+2)Q+38-2ap)

Theorem 2.351f f(z2) = Z—Z:akzk and g(z) = Z—Z:bkzk :0<b, <Lk =23...then f'g T "(a, p).
k=2 k=2

Proof. Sincei[k(“ﬂ) (- B—2aPI5(n,K)ab, gi[[k(“ﬂ)‘(1"3‘20‘/’7)]5(”'k)ak <o From Theorem 2.1.1,it follows that
k=2 k=2 26(1-a)

f'geT, (@A)

Remarks 2.3.6 The function g(z) can’t be univalent in the above theorem. For instance, if  g(z) =z - _2 .2 where
a+b

a<b<a, then

a , 2a a+b : ,
<1 butg'(z) =1———12z =0 forz = —— which lies inside U. Hence g(z) is not univalent.
b a+b 2a

I1l. CONCLUSION

In this paper, we introduce “S” be the class of function f in H that are univalent in D. We obtain a new subclass of S* starlike functions of
order a. Further, several properties of the S*-starlike function with negative coefficients including the starlikeness and univalence are studied.
Finally, various other aspects such as integral transforms and quasi-hardmard product functions are presented.
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