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Abstract : The most prioritized topic while studying univalent analytic function is the Riemann mapping theorem. In this communication, 

we introduced ‘S’ be the class of function 𝐟in H that are univalent in D. A new subclass of  𝑺∗-starlike functions of order 𝜶 is studied in this 

paper. Some of the properties of these 𝑺∗-starlike function with negative coefficients including the starlikeness, univalence are reflected. 

Some other aspects such as integral transforms , quasi-hardmard product functions are discussed. Various examples are provided to study the 

results of negative coefficient functions of order ¼. 
 

IndexTerms - Starlike function, univalent analytic function, quasi-hardmard product. 

I. INTRODUCTION 

 

The concepts of analytic function and univalent are heavily used in mathematics. The function 𝑓 which is a complex valued by 

nature is said to be analytic in a domain  (a nonempty open connected subset) if it has a uniquely determined derivative at each point of 

 . The function 𝑓 is defined as  univalent in a domain , if it never takes any value more than once, that is, the condition )()( 21 zfzf   , 

21, zz  implies
21 zz  .A necessary condition for an analytic function f  to be univalent in   is 0)(  zf in . This condition is 

not sufficient which can be seen by considering the function )exp()( zzf   whose derivative never vanishes. But clearly it is not univalent 

in C. The Riemann mapping theorem states that if   is a simply connected domain whose boundary consists of more than the point and 0z  

is a point in    then there exist a unique univalent analytic function 𝑓 which maps   conformally onto the unit disc  1:  zCzD  , 

and the properties 0)( 0 zf  and 1)( 0  zf .While studying geometric properties of functions univalent and analytic in a simply connected 

domain with more than one boundary point one may therefore confine, without loss of generality, it is enough to consider functions analytic 

and univalent in the unit disc D. If the function )
)0(

)0()(
()(

g

gzg
zf




 , 

since 0)0( g then g is analytic & univalent in D. So, considering 

f in Das univalent analytic function which satisfies 0)0( f  and 1)0( f . Let H be the class of functions 𝑓 analytic in D and normalised 

by the conditions 0)0( f  and 1)0( f , and let S be the class of function 𝑓 in H that are univalent in D. The Taylor series expansion of 

such a function f about the origin has the form 

 


2
)(

n

n

n zazzf
             

(1) 

Unless otherwise stated explicitly, it is assumed throughout in the sequel that whenever Sf  , is in Taylor series representation of the form 

(1). The koebe function 
2)1()(  zzzk  which maps the unit disc D onto the entire complex plane minus the part of the negative real axis 

from 1/4 to infinity is theleading example of a function in S. A few illustrative of such functions in S are 1)1(
,

 z

z
z and

z

z





1

1
log

2

1
. 

In the univalent function theory was initiated by koebe [13] in 1907 on the uniformization of algebraic curves. He discovered that 

the ranges of all functions in S contain a common disc bW  , where b  is an absolute constant. The koebe function 
2)1()(  zzzk

shows that
4

1
b . Bieberbach’s [2] establishes that

4

1
b . He also proved in the same paper that if Sf  then 22 a with equality 

occurring iff f  is a rotation [ )()( zefezg ii  ] of the koebe function. Motivated by these extremal properties of the koebe function, 

Bieberabach conjectured that forever 
n

n

n zazzF 



2

)(  S, nan  , n =2, 3, . . . .              (2) 

Equality occurs in (2) for each '' n , iff, )(zf is the koebe function )(zk  or one of its rotations [ )()( zefezg ii  ]. Recently, 

Bieberbach’s conjecture has been proved in affirmative [2]. Whenever there is no ambiguity, we will use term univalent functions in the 

sequel for analytic univalent functions. This section contains some definitions and result concerning the class S and some of the subclasses 

of S that are needed in the sequel. Bieberbach’s inequality 22 a has further implication in the geometric theory of conformal mappings. 

Indeed, any transformation that carries a function of  H   into another function in H    will give some expression for the second coefficient 

to which we can apply this bound. One important consequence is that the class  H   there is a limit to the distortion of the boundary, stated 

by the Koebe distortion theorem. The following results give a basic estimate which leads to the distortion theorem and related results. 
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Theorem 1.1   Let  ).1(  rrez i
  Then, for every Sf  ,  

.
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)(

)(
22
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r

r

r

r

zf

zfz


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
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                                                         (3)

 

Using (3), the following theorem can be established. 

Theorem 1.2     If Sf  , then 

33 )1(

1
)(

)1(
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r
zf

r

r
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
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                                                         (4)

 

an d
22 )1(

)(
)1( r

r
zf

r

r





                                                      (5)

 

These inequalities are appropriate. Equality occurs at each extreme, iff, 𝑓 is a suitable rotation of the koebe function. We shall now discuss 

the properties for functions with positive real part in D . Let’s consider 𝑃 be the class of function 𝑝(𝑧)is analytic with  positive real part in 

D  and𝑝(0)  =  1. The function 𝑝(𝑧) can’t notbe univalent.  In the study of the class S, the koebe function plays a crucial role. 


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                                              ( 6)

 

In the study of the class Carathedory [3] proved that the coefficients of 𝑝(𝑧) satisfying 1,2  npn
 , which is sharp for q(z).  Easily we 

can  proved that if   p (z)   P and  .irez   then  

r

r
zp

r

r




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                                                            (7)

 

These inequalities are appropriate. Equality occurs, iff, )()( zeqzp i  for some real . A simple geometric argument in [5] shows that if 

p(z)   P, then it satisfies the  inequality 

.
)1(

2

1

1
)(

22

2

r

r

r

r
zp







                                                                    (8)

 

Again equality occurs for  )( zeq i  for some real . Goluzin [5] proved that if p(z)  P, then 

2)1(

2

)(

)(

r

r

zp

zpz






                                                     (9)

 

For which we obtain  .
)1(

2
}

)(

)(
Re{

2r

r

zp

zpz




 It can also be proved that .
)1(

4
)(

3r
zp


 Further, let )(p  denote the class of analytic 

functions with 𝑝(0)  = 1 satisfying )}(Re{ zp )10(  , zD. This class of functions was studied by Liberal and Livingston 

[9].Closely related to P is the class Q of all functions Hzf )(  whose derivative has a positive real part.We denote the class of convex 

function by C. An analytic characterization for a function f  in H   to be convex is due to Robertson [10]. Thus, a function f  in  H   is 

convex, iff  

0}
)(

)(
Re{ 






zf

zf
zz ,   Dz .                                                                                     (10) 

The function Hf   is said to be convex of order )1,0(     if for Dz . 

0}
)(

)(
1Re{ 






zf

zfz
 ,  z   D.                                                                                      (11) 
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It is easily seen that  10,)(,)0(   CCCC     and  }.{)1( zC  If   
n

n

n zazzF 



2

)( , then it is known that [5] a necessary 

condition for f to be in C is 1na  ,  𝑛 = 2,3, …. With equality occurring for the functions
1)1()(  zzzf . A sufficient condition for f to 

be in C is that 12  nan
.
If 






2

)(
n

n

n zazf  is in C then Trimble [20] proved that 

).1(3/1 23

2

2 aaa 
                                                              (12)

 

The bound in (12) is an improvement on the bound of 
3

2

2 aa   for  Cf   obtained earlier in [8] and [15]. A domain     in the complex 

plane is said to be starlike with respect to the point  0W  if the line segment  joining 0W  to every other point W entirely in . 

Definition 1.1  A function Hf   is said to be starlike with respect to the point  0W  if f maps D onto a domain that is starlike with respect 

to the point 0W . 
S be the class of starlike functions with respect to the origin . It is observed that SC  .  The containment is proper since 

the koebe function 
2)1()(  zzzk  is in 

S  but not in C.  Robertson [10] proved that a function Hf  , iff,                 

.;0}
)(

)(
Re{ Dz

zf

zfz




                                                                           (13)

 

A function Hf   is said to be starlike of order  )10(   if 

.;}
)(

)(
Re{ Dz

zf

zfz





                                                                                                      (14)

 

Denote by )(S , the class of starlike functions of order . It follows that  SS )0( ,
  SS )0( , 1,0    and }{)1( zS 

.The 

inequality (4) and  (14)  reveal a close connection between starlike and convex functions. That is a function )(Cf   iff )()(   Szzf  

for   10   .  If 





2

)(
n

n

n zazzf  then a necessary condition for f to be in  
S  is that [4] 

...3,2,  nnan                                                                                                           (15)
 

The inequality (15) is intence for the koebe function .)1()( 2 zzzK Let 





2

)(
n

n

n zazzf  be defined in D.  If 1
2






na
n

n
then f (z) in

S . A natural conjecture of starlike leads to the class of spiralike functions, which gives a useful criterion for univalent. A logarithm spiral 

is a curve. In the complex plane of the form 
teWW  0 )(  t , where 0W  and    are complex constants with 0W =0 and   

)Re( =0. If we take 
 ie  with - ¶ /2 < ¶ /2, the curve is called  - spiral. For which (|  | < ¶ /2) there is a unique  - spiral which 

joins a given point 0W =0 to the origin. 

          A domain D containing the origin is said to be  - spiral like if for each point 0W =0 in D  are of the  L-spiral from 0W  to the origin 

lies entirely in D. A function f analytic and univalent in the unit disc, with f(0) = 0 is said to be  -spiral if its range is  -spiral if its range 

is  spiralike, 0-spiral function are simple the starlike functions. A slight modification of the condition for starlikeness characterize  spiral 

functions, which is also a sufficient condition for univalence. 

Theorem 1.3 Let Hf   and | | < ¶ /2.  Then, f is a   spiral in D iff  

0}
)(

)(
Re{  



zf

zfz
ei

 ; z D                                                                                              (16) 

These functions are introduced by Spaik [8].  Libera [15] introduced the class of  - spiral functions of order  ),10(  P   denoted by 

S( ,p), by changing the condition (16) to ; os}
)(

)(
Re{   pc

zf

zfz
e i 


   z  D. In addition to other results, be found coefficient estimates 

for such functions thus, it was proved that if pP),,  ( Sf   then 
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
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


0 1k

k    cos)1(2

k

i

n

e
a


 for n=2,3…                                                    (17) 

holds, and that equality occurs for the function .)1()( )exp(cos)1(2  izzzf  It can be noted that S( ,0) is the class of  - spiral 

functions. 

 Another incredible subclass ofS in which 
S  is the class which is close –to-convex functions. In the unit disc, the function f is 

analytic by nature and is said to be close-to-convex [19], if there is a convex function     such that  

,0}
)(

)(
Re{ 



z

zf


  z D.                                                                          (18) 

We denote K be the class of close-to-convex function is univalent, it may be observed that .KSSC  
 However, a close-to-convex 

function need not be  -spiral. Let f(z) be defined by (1) and let P( ) be the class of functions of the form  f(Z) which satisfy 

}
)(

Re{
z

zf
  in D and Q( ) be the class of functions  f(z) which satisfy  ))(Re( zf  for z  D. We observe that f(z) Q( )  

iff  )()( Pzfz     for 10   . 

 The univalent analytic functions of class S has been studied widely. The main focus in this areaconcentered on determining the 

estimates of coefficients and also the estimates for )(zf and )(zf  . Failure to settle to Bieberbach’s is conjecture. Namely  nan   for n=2, 

3…. Many part of workers attempted to investigate various subclasses of the class of univalent functions. Among such subclasses, ‘T’ be the 

class of functions whose non zero coefficients, whose the second on, are negative, that is, an analytic univalent functions f is in T iff it can 

be expressed in the form 

)0()(
2

 




n

n

n

n azazzf  

 In 1975,H. Silverman considered a subclasses of T comprised of polynomials having |z|=1 as radius of univalence. For this class, he 

obtained a necessary and sufficient condition in terms of the co-efficient and with the conformal mapping of univalent functions. According 

Silverman [16] , co-efficient inequalities, distortion and covering theorems for the subclasses  )(S  and  )(C  of T, the class of 

starlike functions of order    and the class of functions of order   respectively. Let )(P   and )(Q  denote the classes obtained 

by taking intersection of  )(P   and )(Q   with T, that is, )(P  = TP )( and .)()( TQQ  
 

 

 

 

 

II. A SUBCLASSES OF STARLIKE FUNCTIONS WITH NEGATIVE COEFFICIENTS 

 Let’s consider A be the class of function of the form   







2

)(
k

k

k zazzf                                                                        (19) 

which are analytic in the open unit disc }.1|:|{  zzu  Further, consider  S be the class of all functions in A which are univalent in U. Let 

)10(),(  S  be the subclasses of functions in S which are starlike of order .Analytically; )(Sf   iff  f  is of the form (19) and 

satisfies 


}
)(

)(
Re{

zf

zfz
   (z U).  

                Similarly f  C ( ); iff, f is of the form (19) and 



 }

)(

)(
1Re{

zf

zfz
   (z U). Now for f  C( ) we have







2

)(
k

k

k zazzf ; For some suitable  san '  and 



 }

)(

)(
1Re{
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zfz
   (z U). Now, 






2

11)(
k

k

k zkazf  implies

.)(
2







k

k

k zkazzfz Therefore,   z-f is of the form (19). Again, }
)(

))((
Re{

zfz

zfzz




 = 




 }

)(

)(
1Re{

zf

zfz
  (since f is in c ( )). Also, 

for )( Szf , we can easily found that f  C ( ). Thus, we have f  C( ) iff  SSzf   )(  and we note that the function f is in 

S is a starlike function of order  )10(   and type  )10(    , if it satisfies; 
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Denotes the class of  such functions f that are in S and satisfies (20) by S ( ), . S ( ), is called as the class of starlike functions of 

order   and  .Further, f  S is in C ( ), denotes the class of convex function of order   and   iff   f  S ( ), .We observe that 

S ( )1,  = S )(
be the class of starlike functions of order    and S ( ),0   be a subclass of starlike function  according to Padsmanabhan 

(1968). Further f  S is in C ( ), , the class of convex function of order   and type    if and only if   f  S ( ), .We denote that 

S ( )1,  + S )(
, the class of starlike functions of order    and S ( ),0   is a subclass of starlike function studied by Padsmanabhan 

(1968). Further f  S ( ),  : )10(    the values of 
)(
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zf

zfz 
 lie in a disk centred at  
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)21(1







  and whose radius is .
1

)1(2
2







Let’s consider T be the subclass of S comprised of functions whose non zero coefficients from the second on are negative, that is an analytic 

and univalent function is in T iff it can be expressed in the form .)(
2







k

k

k zazzf We denote by   T )(
, C )(

, S ),( 
, and C

),( 
.  The classes obtained by taking intersection of the classes T )(

, C )(
,   S ),( 

 and  C ),( 
, respectively. The classes 

T )(
& C )(

, and were introduced and studied by Silverman (1975) whereas the classes S ),( 
 and C ),( 

 and were introduced 

and studied by Gupta and Jain (1976). These classes possess many unique properties and also been derived by Silverman and silvinia (1979), 

Owa (1983), Kumar (1987) and others. 

The objective  of this t section is to provide  more general class T ),( 
 of analytic univalent functions involving Ruschewegh’s 

derivatives, and  then extent some of the results of Silverman (1975), Gupta and Jain (1976) to the class T ),( 
. We also study some 

other aspects such as quasi-hadamard product and integral transforms of functions in T ),( 
. By proper choices of n,   and     we get 

the corresponding results for the classes T )(
, S ),( 

, and its allies classes. 

2.1 A general class T ),( 
 of analytic univalent functions 

We begin with definition of the class T ),( 
 in this section and deals with the determination of sharp coefficient estimates and 

comparable results for the class T ),( 
. 

  Definition 2.1.1 The function f  is said to be in class T ),( 
; n=0, 1, 2… if it satisfied the condition. 
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zzfD . Taking D we have  







2

),()(
k

k

k

n zaknzzfD   .                                                                                     (22) 

 Thus )(0 zfD   and )()( zfzzfD  . Setting n=0 in (21) we have ),( T  be the class of functions  Tf   satisfying      

)(

)21(
)(

)(

1
)(

)(

Uz

zf

zfz

zf

zfz













. Clearly by (2.1) we have f is in ),( S .  Thus  ),( T   reduces to ),( S  and similarly 

),( T  reduces to ),( C .We denote )1,(


nT     by   )(


nT   which coin die with the classes )(T   and  )(C   for 

n=0 and n=1. It will be shown in this section that   )(),(),(  
 TTT nn   for and  1,0     and   n=0, 1, 2….Now we 

are going to prove the following coefficient inequalities for functions belonging to the class )1,(


nT . 
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Theorem 2.1.1  Let    





2

)0()(
k

k

k

k azazzf . Be analytic in U, then  ),( 


 nTf ,  iff  







2

)1(2),()}21()1({
k

kaknk 
                                                (23)

 

where 
)!1)(!(

)1(
),(






kn

kn
kn   the result is sharp. 

Proof.  Let 





2

)0()(
k

k

k

k azazzf   is in    ),( 


nT .Therefore for all UZ    we have   

                          

















)21(
)(

))((

1
)(

))((

zfD

zfDz

zfD

zfDz

 

   which implies  )(

),()21()1(2

),()1(

2

2 Uz

zaknkz

zaknk

k

k

k

k

k

k








































 





.

 

 

Now choose the value of z on the real axis such that            
)(

))((

zfD

zfDz





    

is real . 

Therefore  









2 2

),()21()1(2),()1(
k k

k

k

k

k zaknkzzaknk  . Letting 1z   through positive values we obtain             

 









2 2

),()21()1(2),()1(
k k

kk aknkaknk 
  

  

Which implies    





2

)1(2),()}21(){(
k

kaknk   

Conversely, let (23) consists for all admissible values of  &  , the expression can be derived as 

))()(21())(())(())(()( zfDzfDzzfDzfDzf nnnn    

On replacing  )(zfD     and   )(  zfD   by their Fourier series expansions in the above equations, we have for |z|=r<1, 

|),()21()1(2|),()1()(
2 2

 









k k

k

k

k

k zaknkzzaknkf   

}),()21()1(2{),()1(
2 2

 









k k

k

k

k

k raknkrraknk   

                                        = 





2

)1(2),()}21()1({
k

k

k rraknk   

Since the above inequality holds for all r; 10  r , letting 1r ,we get 

0)1(2),()}21()1({)(
2




k

kaknkf   

By (23). Hence in view of (2.1), it follows that ),( 


 nTf . The result is unique, the external function being given by 

)2(
),()]21()1([

)1(2
)( 




 kz

knk
zzf k




                                     (24) 

Corollary2.1.2  If 





2

)(
k

k

k zazzf is in  ),( 


nT ; then )2(
),()]21()1([

)1(2





 kz

knk
a k

k



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With equality for each K, for functions )(zf k  given by(24). Setting n=0 and 1  in theorem 2.2.1, we get the following result of 

Silverman (1978). 

Corollary 2.1.3  Let 





2

)(
k

k

k zazzf   be analytic in U.  Then   )(Tf    iff  







2

)1()(
k

kak 
                                                                                                                  (25)

 

Thus result is unique. 

 

Remarks 2.1.4  Putting n=0 in Theorem 2.1.1 and Corollary 2.1.2,  we get a result of Gupta and Jain (1976) which in turn leads to Silverman’s 

result (1975) for 1 . 

Remarks 2.1.5  Since for  10,10    and n=0, 1, 2…. 

)1(2

),(]2)1()1([

)1(2

),(]2)1()1([

1 























 knkknkk
 

It follows from Theorem 2.1.1 and Corollary 2.1.3 that ),( 


nT  ( ),( 


nT )(T ) for 10     and n=0, 1, 2… 

Using the co-efficient inequalities in Theorem 2.1.1, we proved the follow comparable results. 

 

 

Theorem 2.1.6  For n=0, 1, 2…., we haveT ( ),( 


nT  ) ),( 


nT where  






2)4(2

)1()1(31
),,(






nn

nn
n

.

 

Thus the  result is most favourable. 

Proof . Suppose 





2

1 ),()(
k

n

k

k Trazzf  . Then by theorem 2.1.1 we have 

 



 



2 )1(2

1),1()21()1(

k

kaknk





                                                                               (26)

 

To prove that ),( 


 nTf , we must show that  

 

 



 



2 )1(2

1),()21()1(

k

kaknk





                                                                                         (27)

 

Thus (27) will be satisfied if   

            
















1

)2),1()](21()1([

1

),()]21()1([ kknkknk
.                           (28) 

We shall show that the right hand side of (28) is an increasing function of K .This will be true if for n=0, 1, 2… 

)1)(1(2

)]21()1([()()]21()1)(1)[(1)(1()(









n

kkknkkknk

 

is non-negative, which is certainly true as  0)1)(1()(   kkzn   for k≥2. Since the right hand side of (28) is an increasing function 

of k, putting  k  in (28) we reduce that   





2)4(

)1()1(31






nn

nn

.

 

This proves the theorem. 

The result is unique and the external function being given by 2

)231)(2(

)1(2
)( z

n
zzf










.

 Putting n=0 in Theorem (2.1.6) we get 

the following inclusion relation which coincides with a result of Silverman (1975) for 1 . 
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Corollary 2.1.7 For 10      and 10    we have   ),(,    S , 
where

)21(

31
),(









  . The result is best 

possible. 

2.2 Integral transformation of functions in  ),( 


nT  

This particular section narrates that integral transformers of functions in  ),( 


nT  of the type consider by Bernardi (1969). 

Theorem 2.2.1   If   ),( 


 nTf , then the integral transformers    

c

c
z

c
zF

1
)(




0

z
dttft c )(1

                                           (29) 

 are in )(t , where  
)1()12(2)1)(2)(1(

)1()2(2)1)(2)(1(
,,,











ncncn

cncncn
ncXX

.

 

The result is appropriate for the function
2

)231)(1(

)1(3
)( z

n
zzf








 . 

Proof.   Suppose    





2

),()(
k

n

k

k Tzazzf   

= 


 




2

1

k

k

k za
kc

c
z  

In (25) it is sufficient to show that 𝑓(𝑧)=









2

1
))(1(

)1)((

k

ka
kc

ck




 . For ),( 


 nTf , we have by Theorem 2.1.1 

=   1
)1(2

),()]21()1([

2








k

kaknk




 

Thus, the objective can be satisfied  if 

)2(
)1(2

),()]21()1([

)1)((

)1)((










k

knk

kc

ck








 

or 

)1)(1(2)]21()1()[,()(

)1()1(2)]21()1()[,()(











ckknkc

ckkknkc

                                         (30)

 

We shall prove that the right hand side of (30) is an increasing function of k. This will be true if for n=0, 1, 2…. 

0)1)(1(2)}21()

1(){,()()}2)1()1)(1){(1,()1)(1()(







 kknkckkknkckkn

         (31) 

Now for n=0,(31) becomes 

)1)(1(2

)}21()1(){()}2)1()1)(1){(1)(1()(







 kkckkkckkn
 

=k(k-1)(1+ ) > 0 

Theorem 2.2.1 gives that if   )1,0(


 nTf  then the Libera transform 
z

zF
2

)(1 
n

z


dttf )(   is in  )23/13(  nnT  

From this it follows that if )0(Tf  then  )2/1(1 F  and  )0(Cf  implies that )5/4(1

TF . Also from the recursive 

formula 

....2,1,0);1()1)(1(2)}21()1)(1{(

)1,()1)(1()())(()1( 1



 

nckk

knkckkknkn nn





                               (32)

 

we obtain 

...2,1,0);()1()()(  nknkkn nn 
                                                                                    (33)

 

From (32)  and  (33), (31) follows. Hence the right hand side of (30) is an increasing function by putting k=2 in (30) we get, 
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)1()12(2)1)(2)(1(

)1()2(2)1)(2)(1(










ncncn

cncncn
X  

This complete the proof. Setting n=0 in Theorem 2.2.1,we get the following result. 

Corollary 2.2.2 If );,(  Sf  then the integral transformers  )(zFc  defined by (2.3.1) are in );( 1
T  

where,      
)1(2)1)(2(

)1(2)1)(2(
),,(11











c

cc
c

.

 

 Taking n=1 in Theorem 2.2.1, we have  

Corollary 2.2.3  If );,( Cf  then the integral transformers  )(zFc  defined by (2.3.1) are in );( 2
T  

 Where 
)3)(1()1)(2(

)1(2)1)(2(
),,(22






cc

c
c






.

 

Remarks 2.2.4 It is interesting to note that for c=1 and ),(  = (0, 1). 

2.3 Quasi – Hadamard product for functions in ),( 


nT  

Let   





2

0,)(
k

k

k

k azazzf . Then their quasi – Hadamard product (f*g) (z) is defined by (Kumar 1987, Owa 1983) 

                                              

k

kk zbazzgzfzgf  )(*)())((  

The following results for functions can be shown in ),( 


nT . 

Theorem 2.3.1 If 





2

)(
k

k

k zazzf and 





2

)(
k

k

k zbzzg are in   ),( 


nT , then the quasi-Hadamard product 

(f*g)(z) = 





2k

k

kk zbaz  ),( 


nT , where   

2222

222

)1()2(4)231()1(

)1)(31()2(2)231()1(
),,(











nn

nn
n

                                      (34)

 

The best possible result for the functions 
2

)231)(2(

)1(2
)()( z

n
zzgzf










.

 

Proof. Suppose f(z) and g(z) are in ),( 


nT . By taking reference to Theorem 2.1.1 we have  




 



2 )1(2

1),()]21()1([

k

kaknk





                                                                                    (35)

 

 

And 


 



2 )1(2

1),()]21()1([

k

kaknk





.                                                                           (36)

 

Since f(z) and g(z) are analytic in U, So is f(z)*g(z).Further,for   defined as in (34), and (35) and (36) we have 

kk

k

ba
knk




 




2

2

)1(2

),1()]21()1([




 

k

k

a
knk




 




2

2

)1(2

),1()]21()1([





.

 

Therefore, by Theorem 2.1.1 f(z)*g(z) belongs to  ),()1( 


nnT , where     is given by (34). This completes the proof of the theorem. 

 Putting n=0 and  =1 in the previous expand theorem, we deduce the following result. 

Corollary 2.3.2 If 





2

)(
k

k

k zazzf and 





2

)(
k

k

k zbzzg  are elements of  )(T ,thenh(z)=f(z)*g(z) 





2k

k

kk zbaz   is an 

element of  )(C , where k=2 and   =
2)2(

)34(









.
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Remarks 2.3.3  From a result of Kumar (1987,p.73,Theorem A), We note that if f(z) and g(z) are in  )(


nT , then (f*g)(z) is in )(C . 

However, Corollary 2.3.2 shows that if f(z) and g(z) are in T )(  then  (f*g)(z) belongs to C
2)2/34(  

since    

)(
2

)34(
2





c




.Thus, we observe that the class to which the quasi-Hadmard product belongs, determined by us is much smaller than 

that obtained by Kumar (1987).From this follows that our result is more inclusive and applicable and thus improves the result of Owa (1983) 

and Kumar (1987). 

  

Theorem 2.3.4   If );,( 


 nTf    and );,(1 


 nTg then  );,(1 




  nTgf    where 

222

22

)1(4)231)(1(

)1)(31(2)231)(1(
),,(











n

n
n  

Thus result is  possible for the functions  

2

)231)(1(

)1(2
)( z

n
zzf








  and

2

)231)(2(

)1(2
)( z

n
zzg










.

 

Theorem 2.3.5 If 





2

)(
k

k

k zazzf and  





2

)(
k

k

k zbzzg   ; ...3,2,10  kbk  then ).,( 
  nTgf  

Proof. Since .
)1(2

),()]21()1([
[),()]21()1([

22





 







 k

k

k

kk

aknk
baknk




 From Theorem 2.1.1,it follows that   

).,( 
  nTgf  

Remarks 2.3.6 The function g(z)  can’t be univalent in the above theorem. For instance, if 2)( z
ba

a
zzg


   where 

a<b<a, then  
ba

a


<1  but 0

2
1)( 


 z

ba

a
zg  for

a

ba
z

2


  which lies inside U. Hence g(z) is not univalent. 

 

III. CONCLUSION 

In this paper, we introduce “S” be the class of function 𝑓 in H that are univalent in D. We obtain a new subclass of  𝑆∗ starlike functions of 

order 𝛼. Further, several properties of the 𝑆∗-starlike function with negative coefficients including the starlikeness and univalence are studied. 

Finally, various other aspects such as integral transforms and quasi-hardmard product functions are presented.  
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