

A simple and sensitive Spectrophotometric method for determination of clopidogrel from tablets

D. VENKATESWARLU^{1*}, G. SREEDEVI¹, I.E. CHAKRAVARTHY¹, N. RAMI REDDY² AND K. PRABHAVATHI²

¹Department of Chemistry, Rayalaseema University, Kurnool, AP-518004, India

²Department of Chemistry, S.B.S.Y.M. Degree College, Kurnool, A.P-518004, India

ABSTRACT

A simple, sensitive, rapid and accurate spectrophotometric method has been developed for the estimation of clopidogrel in pharmaceutical formulations. The proposed method was based on the formation of chloroform extractable complex of clopidogrel with phenol red. The absorbance of the extractable ion pair complex is measured at the wavelength of maximum absorbance 482 nm against the reagent blank. Results obtained are statistically validated and found to be reproducible.

Key words: Spectrophotometry, phenol red, clopidogrel,

Pharmaceutical and Formulation

MATERIALS AND METHOD

Instrument:

All measurement were done on Milton Roy 1001 spectrophotometer by using 10 mm matched quartz cuvettes.

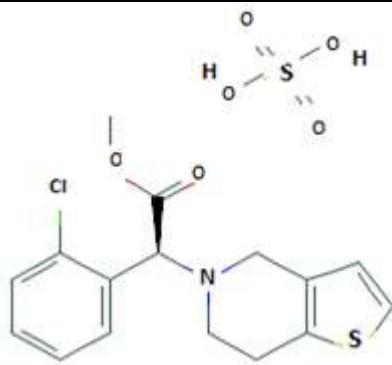
Hydrochloric acid (0.1N):

10 g of 36% HCl (Merck) is dissolved in 1000ml of distilled water.

Phenol Red (100 μ g/ml):

Phenol Red is prepared by dissolving 80 mg of Phenol Red (Fischer scientific) in 100 ml of methanol and 5 ml of this stock solution is dissolved in 40 ml methanol.

0.1 M Potassium Hydrogen Phthalate : It is prepared by dissolving 2.0422 grams of Potassium Hydrogen Phthalate (Fischer Scientific) in 100 ml of distilled water.


Buffer solution (pH 3.6):

Buffer solution (pH 3.6) is prepared by mixing 100 ml of 0.1 M potassium hydrogen phthalate (20.422 gm of Potassium Hydrogen Phthalate (Fischer scientific) in 1000 ml of distilled water) in 12.6 ml of 0.1M HCl(10 g of 36% HCl (Merck) is dissolved in 1000ml of distilled water) and pH of the solution is adjusted to pH 3.6.

INTRODUCTION

The chemical designation is methyl (2S)-2-(2-chlorophenyl)-2-(6,7-dihydro-4H-thieno[3,2-c]pyridin-5-yl)acetate;sulfuric acid. Clopidogrel bisulfate is a thienopyridine with antiplatelet activity. Clopidogrel bisulfate irreversibly alters the platelet receptor for adenosine diphosphate (ADP), thereby blocking the binding of ADP to its receptor, inhibiting ADP-mediated activation of the glycoprotein complex GPIIb/IIIa, and inhibiting fibrinogen binding to platelets and platelet adhesion and aggregation. Molecular formula of Clopidogrel bisulfate is C₁₅H₁₂N₂O₂. Molecular weight of Clopidogrel bisulfate is 321.82 g/mol. Clopidogrel bisulfate is a white to off-white powder. It is practically insoluble in water at neutral pH but freely soluble at pH 1Several analytical methods have been reported for assay of clopidogrel including spectrophotometric method¹⁻²³, RP-HPLC method²⁴⁻³⁸, HPLC method³⁹⁻⁴², LC method⁴³⁻⁴⁵, Solid method⁴⁶⁻⁴⁹, Nano particles method^{50,51}.

This paper describes a rapid, simple, sensitive and economical spectrophotometric methods for the determination of clopidogrel in pharmaceutical formulations forms. The main purpose of the present study was to establish relatively simple, sensitive and validated visible spectrophotometric methods for the determination of clopidogrel in pharmaceutical dosage forms.

Fig.1. The chemical structure of clopidogrel

MATERIALS AND METHODS

Instrument:

All measurement were done on Milton Roy 1001 spectrophotometer by using 10 mm matched quartz cuvettes.

Materials:

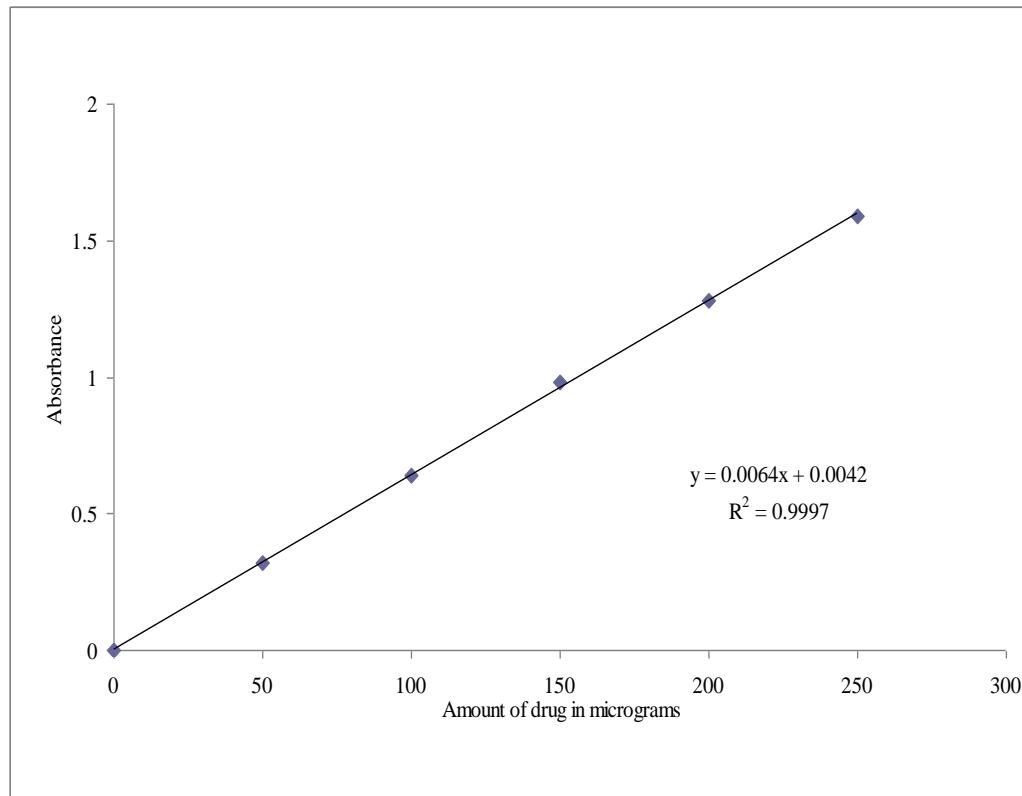
All chemicals used are of A.R. grade and were purchased from S.D. fine chemicals and LOBA-Chemi, Mumbai.

Doubled distilled water were used for preparation of solutions

Buffer solution (pH 3.6):

Buffer solution (pH 3.6) is prepared by mixing 100 ml of 0.1 M potassium hydrogen phthalate (20.422 gm of Potassium Hydrogen Phthalate (Fischer scientific) in 1000 ml of distilled water) in 12.6 ml of 0.1M HCl(10 g of 36% HCl (Merck) is dissolved in 1000ml of distilled water) and pH of the solution is adjusted to pH 3.6.

Preparation of standard stock solution:


The standard

stock solution (1mg/ml) of clopidogrel was prepared by dissolving 100 mg of clopidogrel in 100 ml distilled water. The working standard solutions of clopidogrel were obtained by appropriately diluting the standard stock solution with the same solvent.

Preparation of Calibration curve:

Various aliquots of the standard clopidogrel, solution ranging from 0.5-2.5 ml are transferred into a series of separating funnel. To each flask, 0.5 ml of phenol red solution, 1.0 ml of buffer solution and 5 ml of chloroform are added. Reaction mixture in each funnel is shaken gently for 5 min and allowed to stand for 5 min so as to separate aqueous and chloroform layer. The chloroform layer is separated out and absorbance is measured at 482 nm, against the

reagent blank prepared in similar manner omitting drug solution. Calibration graph is obtained by plotting absorbance values against the concentration of clopidogrel, solution. The calibration curve is found to be linear over a concentration range of 50 to 250 $\mu\text{g/mL}$ of clopidogrel,. The amount of clopidogrel, present in the sample is estimated from the calibration graph. The results are presented in fig.2

Fig.2:Calibration curve of clopidogrel

Assay of pharmaceutical Formulations:

Ten tablets of clopidogrel, are weighed accurately and finely powdered. An accurately weighed portion of powdered sample, equivalent to 50 mg of clopidogrel, was taken in a 50 ml volumetric flask containing 25 ml of methanol, sonicated for 20 minutes. The resultant solution is filtered through Whatman filter paper No. 41 into another 50 ml volumetric flask. The filter paper was washed several times with methanol. The washings were added to the filtrate and the final volume was made up to the mark with methanol and treated as per the procedure of the calibration curve. Amount of the drug present in sample was computed from respective calibration curve. The results are present in table.2

Table. 2:
Optical characteristics of the proposed methods

parameters	Proposed method
λ_{max} (nm)	482
Beer's law limit ($\mu\text{g/ml}$)	50-250
Molar absorptivity ($1 \text{ mole}^{-1} \text{ cm}^{-1}$)	4.43×10^3
Sandell's sensitivity ($\mu\text{g cm}^{-2}$ / 0.001 absorbance unit)	0.0253
Regression equation ($Y = bC + a$)	$Y = 0.0064x + 0.0042$
Slope (b)	0.0064
Intercept (a)	0.0042
Correlation coefficient (r)	0.9997

* $Y = a + bx$, where Y is the absorbance and X concentration in $\mu\text{g/ml}$

Table. 4.3.4:
Assay of clopidogrel in tablet formulations

Tablets	Labeled amount(mg)	*Amount found (mg) \pm S.D*	% label claim	%RSD*	*t value
Tablet 1	75	75.15 ± 0.31	100.2	0.4137	1.079
Tablet 2	75	75.01 ± 0.27	100.01	0.3662	0.0814
Tablet 3	75	74.95 ± 0.23	99.93	0.3175	0.4699

*Average of five determinations

Results and discussions:

Clopidogrel, treated with phenol red dye at 3.6 pH. The resultant solution is extracted with chloroform. The ion pair complex is formed in extractable chloroform layer. The absorbance of the extractable ion pair complex is measured at 482 nm against the reagent blank (prepared in a similar manner devoid of drug solution). The calibration curve (concentration vs absorbance) is linear over the range of 50-250 $\mu\text{g/mL}$ of clopidogrel. The optical characteristics of the proposed method such as absorption maxima, Beer's law limits, molar absorptivity and Sandell's sensitivity are presented in Table 1. The molar absorptivity and Sandell's sensitivity values show sensitivity of the method. The regression analysis using method of least squares was made for the slope (b), intercept (a) and correlation (r) obtained from different concentrations and results are summarized in the Table 1. The value of correlation coefficient was 0.999, which indicated the good linearity of calibration lines. The percent relative standard deviation calculated from the five measurements of clopidogrel, shown in Table 2. The % RSD is less than 2, which indicates that the method has good reproducibility. The values of standard deviation values are low, indicates high accuracy and reproducibility of the method. The 't' calculated values are compared well with the theoretical value of 2.78 thereby indicating that there is no significant difference between proposed method and official method. There is no effect of additives and excipients such as starch, calcium lactose and glucose in the concentrations those present in general pharmaceutical preparations.

The proposed method is found to be simple, precise, accurate and time saving, reproducible and can be conveniently adopted for routine analysis of estimation of clopidogrel, in bulk drugs samples and pharmaceutical formulations.

References:

1. M. Shireesha, L. Madhavi, G Tuljarani, 2013, Spectrophotometric Determination of Clopidogrel in Pharmaceutical Formulations, Asian Journal of Research in Chemistry, 4(10), 1566 - 1568.
2. P Mishra, Archana Dolly, 2006, Spectrophotometric Methods For Determination Of Clopidogrel In Tablets, Indian J Pharm Sci, 68(3), 365-368.
3. Sunil Singh, Nitin Dubey and D.K. Jain, 2010, Simultaneous Estimation of Atorvastatin, Clopidogrel and Aspirin in Capsule Dosage forms using UV-Spectroscopy, Asian J. Research Chem. , 3(4), 885-887.

4. A. El Yazbi, Fawzy; E. Mahrous, Mohamad; H. Hammud, Hassan; M. Sonji, Ghassan; M. Sonji, Nada, 2010, Kinetic Spectrophotometric Determination of Betaxolol, Clopidogrel and Imidapril in Pharmaceutical Preparations, Bentham Science Publishers, 6(3), 228-236.
5. Mahmoud Mohamed Issa, R'afat Mahmoud Nejem, Alaa Abu Shanab, and Raluca-Ioana Stefan-van Staden, 2013, Resolution of Ternary Mixture of Aspirin, Atorvastatin, and Clopidogrel by Chemometric-Assisted UV Spectroscopic and Liquid Chromatography Methods, International Journal of Spectroscopy, 2013(20), 1-8.
6. Karri Manmadha Rao, Karteek Rao Amperayani, Kolli Deepti and Parimi Uma Devi, 2016, Determination of clopidogrel by visible spectrophotometry in pure form and pharmaceutical formulations, J. Indian Chem. Soc., 93(1), 1-8.
7. P. Mishra and Archana Dolly, 2006, Simultaneous determination of Clopidogrel and Aspirin in pharmaceutical dosage forms, Indian J Pharm Sci, 68(3), 365-368.
8. R'afat Mahmoud Nejem , Mahmoud Mohamed Issa , Alaa Abu Shanab, Raluca-Ioana Stefan-van Staden and Hassan Y. Aboul-enein, 2014 , New Chemometrics Mode Based on Adjacent Data Points' Differences for the Simultaneous Determination of Clopidogrel, Atorvastatin, and Aspirin in their Combined Ternary Drug Formulation, *Sci. Pharm.* , 82(3), 601-616.
9. Sandeep Sahu, Sarada Prasad Sarangi and Himanshu Bhusan Sahoo, 2019, "Development and validation methods for the estimation of Clopidogrel in bulk and pharmaceutical dosage forms", International Journal of Research in Pharmaceutical Sciences, 3(2), 224-227.
10. Madhuri D. Game, K. B. Gabhane, and D. M. Sakarkar, 2010, Quantitative Analysis of Clopidogrel Bisulphate and Aspirin by First Derivative Spectrophotometric Method in Tablets, Indian J Pharm Sci., 72(6), 825–828.
11. P. A. Salunke, S.V. Patil , R. S. Wagh , W.M. Shaikh , S. K. Shimpi , M. B. Raut , S. D. Barhate, 2013, Simultaneous Estimation of Amlodipine and Clopidogrel in bulk and Market Formulation by Q-Absorbance Ratio Method, The Indo American journal of Pharmaceutical Research, 3(5), 3847- 3854.

12. Pagare Sandip Baliram, Gholase Pravin, Rukadikar Ruben, M S Kondawar, 2013, Simultaneous Estimation of Rosuvastatin Calcium and Clopidogrel Bisulphate by First Order Derivative UV Spectrophotometric Method, Inventi Rapid: Pharm Analysis & Quality Assurance, 2013(3), 1-6.
13. S. Srujana, R.S. Chandan, B.M. Gurupadayya, V. Raagaleena and K.M.L. Manoja, 2012, Validated Spectroscopic Determination of Clopidogrel and Gemfibrozil Using 2, 4- Dinitro phenyl hydrazine Reagent , Journal of Pharmacy Research, 5(4), 1906-1909.
14. B. Kale Arun, Mohanty Prachyasuman, P. Choudhari Vishnu , S. Sutar Abhijit, C. Jagdale Swati, S. Kuchekar Bhanudas, 2011, Spectrophotometric Simultaneous Determination of Clopidogrel and Aspirin in Combined Tablet Dosage Form by Ratio Derivative and Area Under Curve Method, Research Journal of Pharmacy and Technology, 4(1), 105-108.
15. Hala E.Zaazaa, Samah S.Abbas, M.Abdelkawy, Maha M.Abdelrahman, 2009, Spectrophotometric and Spectrodensitometric determination of Clopidogrel Bisulfate with kinetic study of its Alkaline degradation, Talanta, 78(3), 874-884.
16. Laxmileena D. Patil, Sachin V. Gudi, Deepali D. Jadav, Yogita A. Kadam, Sampada D. Dalvi and Pramod L. Ingale, 2013, Development and validation of UV-spectrophotometric methods for simultaneous estimation of Amlodipine besylate and Clopidogrel bisulfate in bulk and tablet dosage form, Scholars Research Library Der Pharma Chemica, 5(4), 282-287.
17. Mital Gosai , Rupal Tanna, Kashyap Thumar , Jasmin Chikhalia, 2012, Development and Validation of First Order Derivative Spectrophotometric Method for Simultaneous Estimation of Metoprolol Succinate and Clopidogrel Bisulphate in Tablet Dosage Form, Inventi Rapid: Pharm Ana & Qual Assur, 2012(3), 1-6.
18. Savani Pankaj, Chauhan Sudhanshu, Jain Vineet, Raj Hasumati, Patel Sagar, 2016, Development and Validation of Analytical Method for Clopidogrel Bisulphate and Irbesartan by Simultaneous Equation Spectroscopic Method, Asian Journal of Pharmaceutical Analysis, 6(2), 102-108.

19. Sabrein H. Mohamed, Alyaa I. Magdy and Ashour A. Ahmed, 2018, Exploring the nature of the Clopidogrel-Bromocresol green interaction via spectrophotometric measurements and quantum chemical calculations, RSC Adv., 8(1), 29104-29114.
20. M. Sharaf El-Din, F. Ibrahim, S.H. Shalan and H. Abd El-Aziz, 2018, Spectrophotometric Methods for Simultaneous Determination of Rivaroxaban and Clopidogrel in Their Binary Mixture, Sharaf et al., Pharm Anal Acta, 9(1), 1- 9.
21. D. Rashmi Singh, Hitendra Yadav, Madhuri Hinge, Alisha Patel, 2016, Development and Validation of Analytical Methods for Simultaneous Estimation of Rosuvastatin, Clopidogrel and Aspirin in Pharmaceutical Dosage Form, J Pharm Sci Bioscientific Res., 6(2), 197-206.
22. Onyia, Kelechi, Nwodo, Ngozi Justina and Ibezim, Akachukwu, 2015, Spectrophotometric Determination of Clopidogrel in Pure Powder and in Tablets, Research Journal of Chemical and Environmental Sciences, 3(1), 65-69.
23. T. S. Vishwas, B. M. Gurupadayya, R. Maruthi and Rupshee Jain, 2019, Simultaneous Estimation of Atorvastatin and Clopidogrel by Simultaneous Equation Method in Capsule Dosage form, IJPSR, 10(7), 3305-3310.
24. K. Purushotam Sinha, C. Mrinalini, I. Damle and K.G. Bothara, 2009, A Validated Stability Indicating HPTLC Method for Determination of Aspirin and Clopidogrel Bisulphate in Combined Dosage Form, Eurasian J. Anal. Chem., 4(2), 152-160.
25. K. Anandakumar, T. Ayyappan, V. Raghu raman, T. Vetrichelvan, A. S. K. Sankar and D. Nagavalli, 2007, RP-HPLC analysis of Aspirin and Clopidogrel bisulphate in combination, Indian J Pharm Sci, 69(4), 597-599.
26. A. Najma Sultana, Kiran. Ali, S. Muhammad. Arayne, Muhammad Nawaz, 2011, Simultaneous Determination of Clopidogrel and Aspirin by RP-HPLC from Bulk Material and Dosage Formulations Using Multivariate Calibration Technique, Journal of Chromatographic Science, 49(2), 165–169.

27. R. Akter, S. Banik, A. Ghosh, & M.M. Rashid , 2014, Optimized and Validated RP-HPLC Method for the Determination of Clopidogrel in Bulk and Pharmaceutical Formulation, Journal of Scientific Research, 8(3), 439-446.
28. G.S. Devika, M. Sudhakar, J. Venkateshwara Rao , 2011, A New Simple RP-HPLC Method for Simultaneous Estimation of Asprin, Atorvastatin and Clopidogrel in Capsule Dosage Form, Asian J. Research Chem., 4(5), 795-799.
29. K. Nalini. Sahoo, Madhusmita Sahu, S. Podilapu Rao, N. Jajula Indira,N. Sandhya Rani &K. Goutam Ghosh, 2014, Validation of assay for bulk Clopidogrel and for some tablet forms by reverse-phase high-performance liquid chromatography, Journal of Taibah University for Science, 8(4), 1-8.
30. Md. Gousuddin, Pinaki Sengupta, Vijaya Datt Tripathi, 2016, Stability Induced RP-HPLC Method for Simultaneous Determination of Aspirin and Clopidogrel in Dosage Form, Malaysian Journal of Analytical Sciences, 20(2), 247 – 257.
31. Samer Housheh, Ali Daoud1 , Saleh Trefi , Mohammad Haroun and M. Fawaz Chehna, 2014, Gastroretentive Nanoparticles of Repaglinide, Optimization of RP-HPLC Assay for Pharmaceutical Analysis of Clopidogrel, International Journal of Pharmaceutical Sciences and Nanotechnology, 7(1), 2371-2376.
32. Mohamad Ammar Al-Khayat , Samer Haidar, Huda Mando, 2012, Development and Validation of RP-HPLC Method for Determination of Clopidogrel in Tablets, Int. J. Pharm. Sci. Rev. Res., 14(2), 1-5.
33. R. Satya Sundar, K. Valliappan, 2014 , An Improved RP-HPLC Method for the Simultaneous Estimation of Aspirin, atorvastatin and Clopidogrel in Pharmaceutical formulation Using Experimental design Methodology, Int J Pharm Pharm Sci, 6(11), 279-283.
34. P. K. Shrivastava, P. K. Basniwal, Deepti Jain and S. K. Shrivastava, 2008, Concurrent Estimation of Clopidogrel Bisulfate and Aspirin in Tablets by Validated RP- HPLC Method, Indian J Pharm Sci; 70, 5, 667– 669.
35. P. Venkateswar Rao, Konda Ravi Kumar , N. Srinivasa Rao, 2015, Development of a RP-HPLC Method for Simultaneous Determination of Atorvastatin Calcium and Clopidogrel Bisulphate in Pharmaceutical Formulation, Am. J. Pharm Health Res., 3(11), 122-130.

36. Roshan Telrandhe , 2017, Development and Validation of RP-HPLC method for simultaneous determination of Rosuvastatin and Clopidogrel in Tablet dosage form, Journal of Liquid Chromatography and related Technologies, 5(3), 1-15.
37. Telrandhe Roshan, 2018, Development and Validation of UV Spectrophotometry and RP-HPLC Method for simultaneous determination of Rosuvastin and Clopidogrel in Tablet Dosage Form, Asian Journal of Pharmaceutical Analysis, 8(1), 25- 32.
38. Ehab Farouk Elkady,Marwa Hosny Tammam &Ayman Abo El maaty, 2017, Stability Indicating HPLC-UV vs. UPLC-DAD for Estimation of Atorvastatin Simultaneously with Aspirin, Clopidogrel and their Related Impurities in Bulk and Capsules, Analytical Chemistry Letters , 7(5), 596-610.
39. K. Muhammad Javed, Zafar Iqbal ,Abbas Khan,Abad Khan,Yasar Shah &Lateef Ahmad, 2011, Development and validation of HPLC-UV Method for the Determination of Clopidogrel in Pharmaceutical dosage form and Human Plasma, Journal of Liquid Chromatography & Related Technologies, 34(18), 2118-2129.
40. Mona E.,ElTantawy, Lories I.,BebawyRafeek F.Shokry, 2014, Chromatographic determination of clopidogrel bisulfate; detection and quantification of counterfeit Plavix tablets, Bulletin of Faculty of Pharmacy, 52(1), 91-101.
41. Pradip Kumar Tiwari , Amit Jain, BK Dubey, GK Pandey, Suresh Dhakad, 2019, Analytical Method Development and Validation for the Simultaneous Estimation of Aspirin, Clopidogrel and Rosuvastatin in Pharmaceutical Dosage Form, Journal of Drug Delivery and Therapeutic, 9(4), 9, 432-438.
42. Vocilkova, Lenka; Opatrilova, Radka; Sramek, Vladimir, 2009, Determination of Clopidogrel by Chromatography, Current Pharmaceutical Analysis, Bentham Science Publishers, 5, 4, 424-431.
43. Getu Kahsay Ann Van Schepdael Erwin Adams, 2012, Development and validation of a liquid chromatographic method for purity control of clopidogrel-acetylsalicylic acid in combined oral dosage forms, Journal of Pharmaceutical and Biomedical Analysis, 61(5) , 271-276.
44. Najma Sultana, Muhammad Saeed Arayne, Muhammad Nawaz and Kiran Amir Ali, 2013, Zero crossing derivation spectrophotometry and Liquid Chromatographic Method for the Quantitative Determination of Clopidogrel in Presence of HMG CO-A Reductase Inhibitors, J. Chil. Chem. Soc., 58(1) , 1-6.

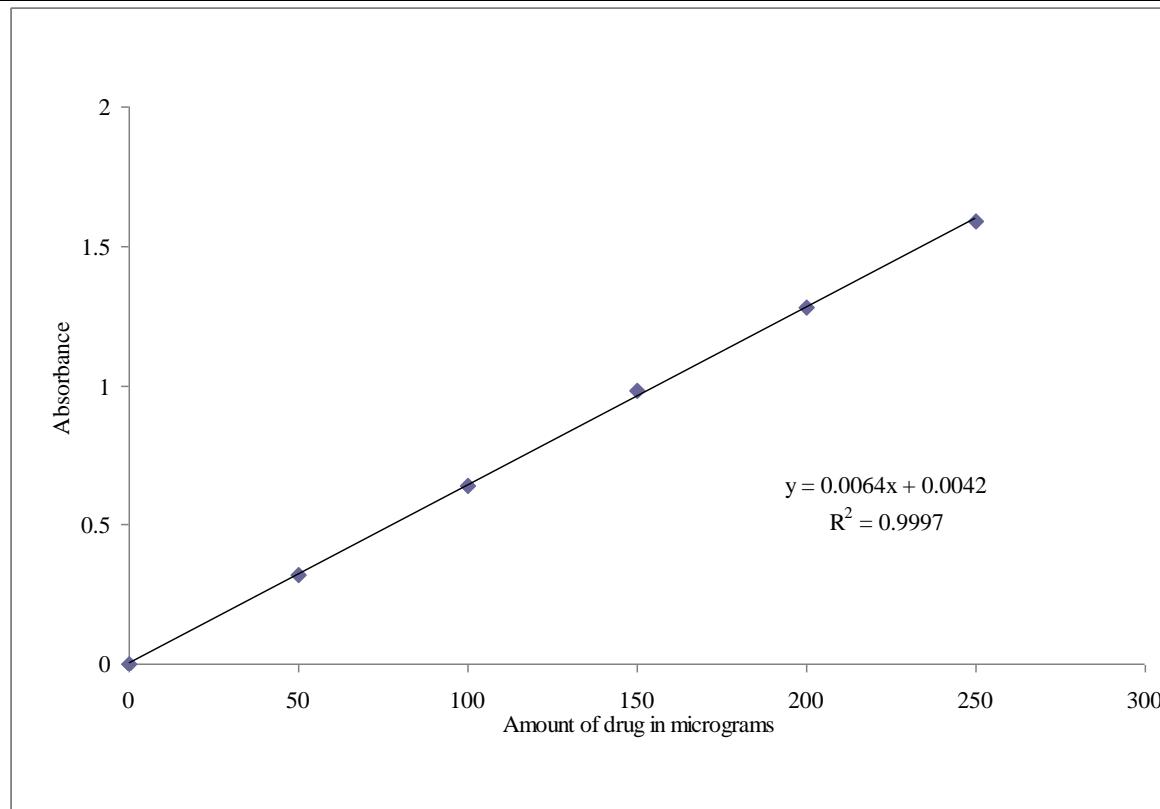

45. R.Sathyasundar and K.Valliappan, 2014, New Stability Indicating Assay Method by Liquid Chromatographic Separation of Aspirin, Atorvastatin and Clopidogrel in Pharmaceutical Dosage form, Indo American Journal of Pharmaceutical Research, 4(12), 5919-5927.
46. S. V. Deshmane, 2016, Preparation and Characterisation of Clopidogrel Bisulfate Solid Dispersion Using Vigna Radiata Extract as a Natural Drug Carrier, Asian Journal of Pharmaceuticals, 10(2), 108-112.
47. Sawale Renuka, Deshmane Subhash, Biyani Kailash, 2016 , Preparation and Characterization of Clopidogrel Bisulfate Solid Dispersion using Vigna radiata Extract as a Natural Drug Carrier, Asian Journal of Pharmaceutics , 10(2), 108 – 112.
48. R. Redya Naik, Aishwarya Madikanti, T.Sunitha, Nusrath Yasmeen, P.S. Malathi , D. Vijay kumar Gummadi Sridharbabu , Sujatha Ramavath . S.Srinu Naik, 2014, Formulation and Evaluation of Oral Dispersible Tablets of Clopidogrel bi Sulfate by Solid Dispersion Method, Indo American Journal of Pharmaceutical Research, 4(7), 3152- 3162.
49. Shailendra Kumar Singh, Soukarya Som and Upender Shankhwar, 2011, Formulation and optimization of solid dispersion of Clopidogrel with PEG 6000, Journal of Applied Pharmaceutical Science, 1(8), 217-226.
50. M. M. Ayad, H. E. Abdellatef, M. M. Hosny and Y. A. Sharaf, 2015, Determination of Pipazethate hydrochloride, Fenoterol hydrobromide and Clopidogrel hydrogen sulphate using citrate-capped gold Nanoparticles, Journal of Chemical and Pharmaceutical Research, 7(11), 68-74.
51. Zainab E. Jassim and Ahmed A. Hussein, 2014, Formulation and Evaluation of Clopidogrel Tablet Incorporating Drug Nanoparticles, International Journal of Pharmacy and Pharmaceutical Sciences, 6(1), 838-851.

Table.1: Optical characteristics of the proposed method

parameters	Proposed method
Wavelength (nm)	482
Beer's limits, mcg/ml	50-250
Sandell's , sensitivity, ($\mu\text{g cm}^{-2}$)	0.1421
Molar absorptivity, ($\text{L mol}^{-1} \text{ cm}^{-1}$)	1.42×10^2
Regression equation, Y^*	$Y = 0.0064x + 0.0042$
Correlation coefficient, (r)	0.9997
Intercept (a)	0.0064
Slope (b)	0.0042

Table.2: Assay of Clopidogrel in pharmaceutical preparations

Formulation	Labeled amount	*Amount found (mg \pm S.D)	% RSD	*t value
Tablet 1	75	75.15 ± 0.31	0.4137	1.0791
Tablet 2	75	75.01 ± 0.27	0.3662	0.0814
Tablet 3	75	74.94 ± 0.23	0.3175	0.4699

Fig.2: Calibration curve of clopidogrel