COMPARATIVE STUDY OF VARIOUS TOUCH **SCREEN TECHNOLOGIES: A REVIEW**

Kshitish S Jha¹, Koushik Saha², Palak Choudhary³, Indrani Naskar⁴, Monalisa Ghosh⁵, Sumanta Chattterjee⁶ ¹Student, ²Student, ³Student, ⁴Student, ⁵Student ⁶Assistant Professor Department of Computer Science and Engineering,

JIS College of Engineering (An Autonomous Institution), Kalyani, India

Abstract: In this paper, the approach would be to understand the significance of different touch screens, their applications and a comparative study among various types of touch screen technologies. Different touch screen technologies are compared in various fields. The touch screen is an assistive technology. The interface can be beneficial to those that have difficulty in using other input devices such as a mouse or keyboard. The basic idea behind this comparative study is to understand different types of touch screen technologies. Various observations are made during this study and its found that different touch screen technology have different workforce in their fields.

Index Terms - Touch Screen Technologies

I. INTRODUCTION

A touch screen is a display device that allows the user to interact with an electronic device. The term generally refers to touching the display of the device with a finger or hand. Touch screens can also sense other passive objects, such as a stylus. A touch screen is any monitor, based either on LCD (Liquid Crystal Display) or CRT (Cathode Ray Tube) technology that accepts direct onscreen input. The touchscreen has two main attributes. First, it enables one to interact directly with what is displayed, rather than indirectly with a cursor controlled by a mouse or touchpad. Secondly, it lets one do so without requiring any intermediate device that would need to be held in the hand.

II. TYPES OF TOUCHSCREEN TECHNOLOGY: The touch panels themselves are based around four basic screen technologies:

- 1. Resistive
- 2. Capacitive
- 3. Surface Acoustical Wave (SAW)
- 4. Infrared (IR)

[A]Resistive: Resistive touch screen is a touch-sensitive computer display composed of two flexible sheets coated with a resistive material and separated by an air gap or microdots. The inside surface of each of the two layers is coated with a transparent metal oxide coating of Indium Tin Oxide (ITO). Resistive touch screen panels are generally more affordable but offer only 75% clarity and the layer can be damaged by sharp objects. These are dust and water resistant.

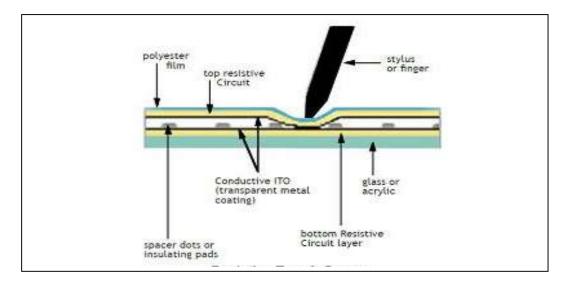


Fig 1: Resistive Touch Screen

[B]Capacitive: A capacitive touch screen is a control display that uses the conductive touch of a human finger or a specialized device for input. When the panel is touched, a small amount of charge is drawn to the point of contact. Liquids, dirt, grease, or other contaminants do not affect them. Capacitive touch screens have excellent clarity, and there are no moving parts to wear out.

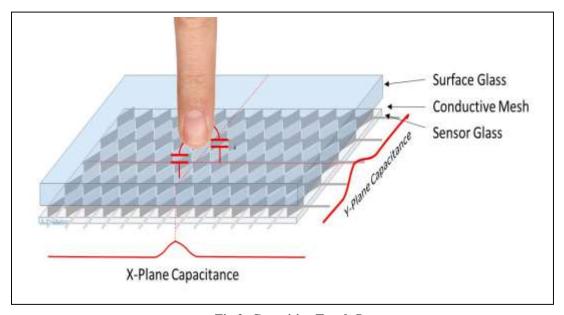


Fig 2: Capacitive Touch Screen

[C] Surface Acoustic Wave: SAW resistive touch screen technology uses ultrasonic waves that pass over the surface of the touch screen panel. Surface Acoustic Wave (SAW) technology is one of the most advanced types of touch screen solutions available in the touch screen a market. Compared to Resistive and Capacitive technologies, SAW technology provides superior image clarity, resolution, and higher light transmission. Because the panel is all glass, there are no layers that can be worn, giving this technology the highest durability factor and also the highest clarity.

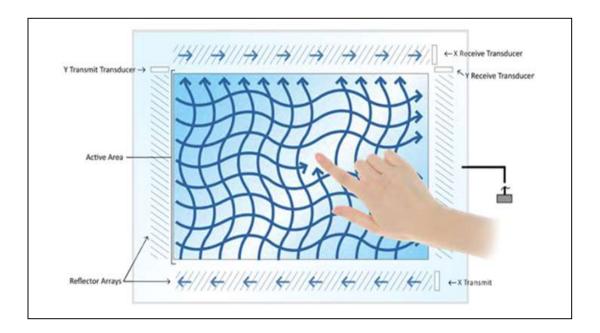


Fig 3: Surface Acoustic Wave Touch Screen

[D] Infrared: Infrared touch uses light emitting diodes and sensors that are embedded in a bezel around the display and emit and detect rows and columns of infrared light across the face of the display. A major benefit of such a system is that it can detect essentially any input including a finger, gloved finger,

III.

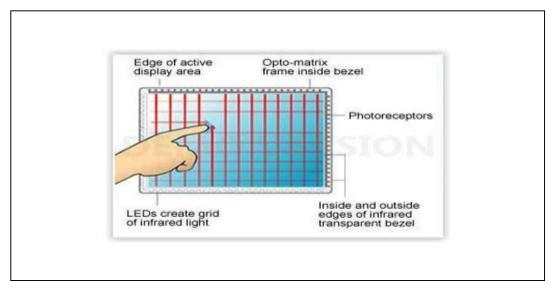


Fig 4: Infrared Touch Screen

COMPARISON TABLE OF VARIOUS TOUCH SCREEN TECHNOLOGIES:

PROPERTIES	RESISTIVE	CAPACITIVE	SAW	INFRARED
Transmissivity/Clarity	Good	Very Good	Very Good	Best
	75-85%	90-98%	90-98%	95-100%
Sensor Substrate	Glass substrate w/	Glass w/ ITO coating	Glass w/ ITO	Any Substrate
	ITO coating		coating	
Activate With Any	Best	Poor	Good	Very Good
Object	Any object	Finger or capacitive	Finger, gloved hand,	Most objects
		stylus	soft/ pliable stylus	
High Sensitivity (Light	Good	Very Good	Very Good	Best
Touch)				
Туре	Surface	Surface	Surface	Edge
	Technique(Electrical)	Technique(Electrical)	Technique(Acoustic)	Technique(Optical)
Durability	5 Years	2 Years	5 Years	5 Years
Stability	High	Normal	Highest	High
Response time	<15ms	<15ms	10ms	<20ms
Waterproof	Good	Good	Normal	Normal
Monitor option	CRT or LCD	CRT or LCD or LED	CRT or LCD	CRT or LCD
Cost	Low cost	Moderate	High	High
Disadvantages	High costs for large	Finger activation	Delicate, expensive	Expensive,
	areas, very sensitive	only, reduces	and sensitive to	detection placed
	to scratch, low	illumination, finger	scratch.	above screen and
	fidelity and reduces	must stay in position		sensitive to
	the visibility of the	for detection so no		ambient light.
	screen.	movement.		
Multiple Support	Yes	No	No	No
Events				

Table 1

CONCLUSION: As discussed in the above observation table, different touch screen technologies have different uses and efficiency in their respective fields. The touch screen interface is easier to use than other input devices. It is useful to make information more easily accessible by allowing user to navigate by simply touching the display screen. Touchscreens can suffer from the problem of fingerprints on the display. This can be mitigated by the use of materials with optical coatings designed to reduce the visible effects of fingerprint oils, such as the oleo phobic coating used in the iPhones, or by reducing skin contact by using a fingernail or stylus. Among all these touch screen technologies, Infrared is the most secured one. It works on the principle of dot projector authentication.

V. **REFERENCES:**

- [1] MR. Bhalla, AV. Bhalla, "Comparative Study of Various Touchscreen Technologies" Year: 2010.Publisher: International Journal of Computer Applications (0975 – 8887)
- [2] J. E. Park, J. Park, Y. H. Hwang, J. Oh and D. K. Jeong, 100TRX-channel configurable analog front-end for touch controller, "Year: 2016Publisher: IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA.
- [3] J. H. Yang et al., "A highly noise-immune touch controller using Filtered-Delta-Integration and charge-interpolation technique," Year: 2013Publisher: IEEE International Solid State Circuits Conference Digest of Technical Papers, San Francisco.
- [4] W. H. Cho et al., "A transceiver for frequency-division multiplexing memory interface, "Publisher: IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, 2015. Year: 2015
- [5] W. H. Cho et al., "10.2 A 38mW 40Gb/s 4-lane transceiver for high-speed Memory interface, "Publisher: IEEE International Solid-State Circuits Conference (ISSCC), San Francisco.
- [6] Y. Hu et al., "3D gesture-sensing system for interactive displays based on extended-range capacitive sensing, "Publisher: IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco. Year: 2014
- [7] Y. Hu et al., "3D multi-gesture sensing system for large areas based on pixel self-capacitance readout, "Publisher: IEEE Custom Integrated Circuits Conference, San Jose. Year: 2014
- [8] L. Du; Y. Zhang; C. C. Liu; A. Tang; F. Hsiao; M. C. Chang, "A 2.3 mW Bootstrapped and Correlated, "Publisher: IEEE Transactions on Circuits and Systems II: Express Briefs. Year: 2015
- [9] L. Du et al., "Invited Air touch: A novel single layer 3D touch sensing system for human/mobile, "Publisher: 53nd ACM/EDAC/IEEE Design Automation Conference (DAC). Year: 2016
- [10] Ken Hinckley, Songbook Heo, Michel Pahud, Christian Holz, Hrvoje Benko, Abigail Sellen, Richard," Year: 2016 Publisher: CHI Conference on Human Factors in Computing Systems ACM, New York, NY, USA.
- [11] Y. Du et al., "A 16-Gb/s 14.7-mW Tri-Band Cognitive Serial Link Transmitter with Forwarded Clock, Year: 2015Publisher: IEEE Journal of Solid-State Circuits.
- [12] Y. Hu et al., "3D multi-gesture sensing system for large areas based on pixel self-capacitance readout using TFT," Publisher: IEEE Custom Integrated Circuits Conference, San Jose. Year: 2014
- [13] L. Du, Y. Zhang, F. Hsiao, A. Tang, Y. Zhao, Y. Li, J. Chen, L. Huang, M.-C. F. Chang, "A 2.3mW Bootstrapped and Correlated," Publisher: IEEE International Solid-State Circuits Conference. Year: 2014