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ABSTRACT: 

An algebraic structure midway between a groupoid and commutative semigroup appeared in1972. M.A.Kazim and MD.Naseerudin introduced 

left almost semigroups as a generalisation of commutative semigroups. They have introduced the braces on the left of the ternary commutative 

law  abc = cba  to get a new pseudo associative law,   i.e.,  (ab)c = (cb)a. It is since than called left invertive law. A groupoid satisifying the 

left invertive law is called a left almost semigroup and is abbreviated as LA- semigroup. Similarly , groupoid satisfying the right invertive 

law,a(bc) = c(ba) is called a rightt almost semigroup and is abbreviated as RA- semigroup 

In this paper we will prove some of the properties of RA-semigroups.  . In this paper in section 2 we define RA-semigroup with examples and 

prove some of the basic results. In section 3 we study the properties of commutative and bi-commutative and transitively commutative RA-

semigroups. In 4 we prove some of the properties of the anti-commutative RA-semigroups. 
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1  INTRODUCTION :  

The algebraic object encountered in this chapter is  a set G with a binary operation ' . '  satisfying right invertive law  is same as the algebraic 

structure " Right almost semigroup   i.e., RA-semigroup"  defind by MD.Naseeruddin in his Ph.D theses with the title "Some studies on almost 

semigroups and flocks" . He defined RA-semigroup as a groupoid satisfying right invertive law. i.e.,  

                                               a(bc) = c(ba) ∀ a, b ,c, ∈ G 

Definition :   Let G be a non empty set and ' · '  be a binary operation from GxG →G. Then (G,.) is called an RA-semigroup if it satisfies, 

a(bc) = c(ba)   ∀  a, b ,c, ∈ G 

The following multiplication table shows the existence of an RA-semigroup. 

                                

 

 

Definition : An RA-semigroup is called a commutative RA-semigroup if     ab = ba ∀  a, b  ∈ G 

Definition : Bi-Commutative RA-semigroup (BC- RA-semigroup) :   

       An RA-semigroup G is called right commutative RA-semigroup  (RC- RA-semigroup) if a(bc) = a(cb), for all   ∀  a, b ,c, ∈ G.   

       An RA-semigroup G is called a left commutative RA-semigroup (LC- RA-semigroup ) if     (ab)c = (ba)c,  for all ∀  a, b ,c, ∈ G 

An RA-semigroup G is called a bi-commutative RA-semigroup  (BC- RA-semigroup ) if it is both LC- RA-semigroup and RC- RA-semigroup. 

Definition : Anti-commutative RA-semigroup: An RA-semigroup G is called anti-commutative RA-semigroup if the identity , ab = ba  ⟹  a 

=b  holds  ∀  a, b  ∈ G  

. x y z 

x x z y 

y y x z 

z z y x 
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Alternative RA-semigroup : An RA-semigroup G is called left alternative RA-semigroup if it satisfies the identity , (aa)b = a(ab). for all a,b 

∈  G 

An RA-semigroup is called right alternative RA-semigroup G if it satisfies the identity, (ab)b = a(bb), for all a,b ∈  G 

Self-Dual RA-semigroup : An RA-semigroup which satisfies left invertive law   (ab)c = c(ba)  for all a,b,c   ∈  G   is called Self -Dual  RA-

semigroup.  

Nuclear square : An RA-semigroup G is called left nuclear square if ∀ a,b,c, ∈ G,  a2(bc) = (a2b)c. Similarly S is called right nuclear square 

if ∀ a,b,c, ∈  G, (ab)c2 = a(bc2) and middle nuclear square if ∀a,b,c, ∈ G, (ab2)c = a(b2c). 

Right transitive RA-semigroup : An RA-semigroup G is called right transitive if , ab.cb = ac   for all a,b, c ∈  G 

Left transitive RA-semigroup : An RA-semigroup G is called left transitive if , ab.ac  = bc   for all a,b, c ∈  G 

Locally associative: An RA-semiroup  G is said be locally associative if,    a2a = aa2   ∀    a   ∈ G 

Cancellative RA-semigroup : Let G be an RA-semigroup. If for all  a, b ,c, ∈ G,  ab = ac  ⟹  b =c then we say that G is a left cancellative 

RA-semigroup 

               Let G be an RA-semigroup. If for all  a, b ,c, ∈ G,  ba = ca  ⟹  b =c  then we say that G is a  right cancellative RA-semigroup 

                 Let G be an RA-semigroup. If for all  a, b ,c, ∈ G,  ab = ac  ⟹  b =c, and also    ba = ca ⟹ b = c, then we say that G is a 

cancellative RA-semigroup 

                  Let G be an RA-semigroup. If for all  a, b ,c, ∈ G,  ab = ca ⟹  b =c, and also    ba = a𝑐 ⟹ b = c, then we say that G is a cross-

cancellative RA-semigroup 

 

2: SOME BASIC RESULTS ON RA-SEMIGROUPS. 

2.1 Lemma : An RA-semigroup G satisfies medial law. 

                   i.e., (ab)(cd) = (ac)(bd)      ∀ a, b, c ∈ G. 

   Proof :   Using right invertive law,    

 (ab)(cd) = d(c(ab)) = d(b(ac)  = (ac)(bd)     

2.2 Lemma :  If right identity 'e'  exists in RA-semigroup then it is unique. 

Proof : If possible there exists another right identity say  f, then 

            f=fe and ef=e and f=fe=f(ee)=e(ef)=ee=e ⟹   f = e 

2.3 Lemma : Ia an RA-semigroup with right identity, paramedial law holds. 

i.e.,   (ab)(cd) = (db)(ca) 

 Proof :   (ab)(cd) = (ab)((cd)e) =e((cd)(ab)) =e(b(a(cd))) = e(b(d(ca))) = e((ca)(db)) 

                            =(db)((ca)e)= (db)(ca). 

2.4 Lemma : In an RA-semigroup with right identity e ,         

                      ab=cd   ⇔   ba=dc                                                                             

Proof : (i)     ab = cd    ⟹    𝑏𝑎 = 𝑑 

𝑏𝑎 =  𝑏(𝑎𝑒) =  𝑒(𝑎𝑏 ) =  𝑒(𝑐𝑑)  =  𝑑(𝑐𝑒)  =  𝑑𝑐. 

 

  Similarly we can show that    (𝑏𝑎)  =  (𝑑𝑐)  ⟹ (𝑎𝑏)  = (𝑐𝑑) 

2.5 Lemma : If an RA-semigroup G contains a right identity the following law holds                                                   (𝑎𝑏)𝑐 =  (𝑎𝑐)𝑏, . ∀ a, b, c 

∈ G. 

Proof : (𝑎𝑏)𝑐 = (𝑎𝑏)(𝑐𝑒) = 𝑒(𝑐(𝑎𝑏)) =  𝑒(𝑏(𝑎𝑐)) = (𝑎𝑐)(𝑏𝑒) = (𝑎𝑐)𝑏. 
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3:  ON COMMUTATIVITY OF RA-SEMIGROUPS 

 3.1 Theorem : An RA-semigroup G is a commutative semigroup iff the following law holds ∀ a, b, c ∈ G. 

                    a(bc)=(ba)c  ---- (a) 

Proof : (i) Let the given condition (a)  holds in G, 

     and          a(bc) = c(ba) ----  (b)      (right invertive law ) 

from (a) and (b), we have  

               (ba)c =c(ba)  ⟹   G is commutative. 

 and a(bc) =(ba)c =(ab)c ⟹   Gis associative. 

∴ G is a commutative semigroup. 

(ii) Let G be a commutative semigroup. 

then, a(bc) =(ab)   =c(ab) =c(ba)  =(ba)c ⟹  a(bc)  = (ba)c 

3.2 Theorem : An RA-semigroup with left identity is a commutative semigroup. 

Proof : Let G is an RA-semigroup with left identity  e  . 

then,  ea = a 

ab = a(eb)  = b(ea) = ba  ⟹  ab =ba⟹ G is commutative. 

a(bc) = c(ba) = c(ab)  =(ab)c       ( Since G is commutative) 

a(bc) = (ab)c⟹  G is associative 

∴ G is a commutative semigroup. 

3.3 Theorem: Let G be a RA-semigroup with right identity. If G is left alternative then G is a commutative semigroup. 

Proof: G is an RA-semigroup  

 Let G is left alternative  then,  

                          aa.b = a.ab    ∀ a, b  ∈ G. 

                         aa.b = a.ab = b.aa  ⟹   a2.b = b.a2  

Now replace a  by  e  we have, e2.a = a.e2  ⟹  a.e =e.a  

Since  e  is the right identity in G we have      a.e =e.a =a  ⟹  e   is the identity in G 

Now  by right invertive law  and identity in G we have, 

ab = a(be) = e(ba) = ba    ⟹     G is commutative 

   and  by commutativity and right invertive law we have, 

   a(bc) =  c(ba) = c(ab) = (ab)c  ⟹  G is associative 

 ∴   G is a commutative semigroup 

3.4  Theorem : A commutative RA-semigroup is, 

(i) Associative 

(ii) Permutable 

(iii Self-Dual 

(iv) Bi-commutative 

(v) Alternative 
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 (vi) Paramedial 

(vii) Nuclear square 

Proof:  Let  G is a commutative RA-semigroup 

(i)  Consider  a(bc) = c(ba) = c(ab) =(ab)c   ⟹ a(bc) = (ab)c ⟹ G is associative 

 (ii) Let G be  a commutative  RA-semigroup, then 

Consider   a(bc) = c(ba) = c(ab)=b(ac) = (ac)b ⟹ a(bc) = b(ac) ⟹ Gis right permutable 

similarly   a(bc)= c(ba)=c(ab)=b(ac)  i.e., Gis left permutable. 

 (iii)  Consider  a(bc) = c(ba) 

By using commutativity on both sides we get, 

                        a(bc) = c(ba) ⇔ (𝑏𝑐)𝑎 = 𝑐(𝑎𝑏)  ⇔ (cb)a =(ab)c 

              Right invertive law ⇔ Left invertive law. ⟹G is Self-Dual RA-semigroup. 

(iv) Consider   a(bc)  &  (ab)c 

Since G is commutative ,we have 

                 a(bc)  = a(cb)       (commutativity) 

                 (ab)c =  (ba)c       (commutativity) 

                         ⟹  G is  Bi-commutative.  

(v)         a(ab) = b(aa)= (aa)b   ⟹ G is left alternative. 

              a(bb) =b(ba)= b(ab)= (ab)b   ⟹ G is right alternative 

              ⟹ G is an alternative RA-semigroup. 

(vi)  Consider  (ab)(cd) = (cd)(ab)   (commutativity) 

                                   = (dc)(ba)     (commutativity) 

                                   = (db)(ca)        (medial law) 

                                          ⟹ G is paramedial 

(vii)  since Commutativity ⟹ Associativity  we have, 

         a2(bc) = (a2b)c,  (ab)c2 = a(bc2),  (ab2)c = a(b2c). ∀ a, b, c, ∈ G⟹G is a nuclear square. 

3.5 Theorem : Let G be an RA-semigroup. Then G is a commutative semigroup if G satisfies any one of the following. 

(i) G is slim RA-semigroup 

(ii)  G is left alternative 

(iii) G is right alternative satisfying cross-cancellation 

(iv) Idempotent and paramedial 

(v) Left commutative with right cancellation 

(vi) Right commutative with left cancellation 

(vii) Self - dual with right identity 

(viii) Left transitive 

(ix)  Right transitive 

Proof:  Let G be an RA-semigroup and let  a, b, c, ∈  G 

(i)  Let G be a slim RA-semigroup.   Then,  a(bc) = ac 
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Consider   ab = a(bb) = b(ba) = ab⟹  ab = ba ⟹  G is commutative. 

(ii) Let G be a left alternative RA-semigroup 

 By left alternativity in G we have ,  (aa)b =a(ab)       ∀ a, b  ∈ G. 

Using right invertive law on the right we get   (aa)b = b(aa)     ∀ a, b  ∈ G. 

                                                                    ⟹ G is commutative. 

(iii) Let G is right alternative RA-semigroup satisfying cross-cancellation 

  Since G is right alternative we have ,  (ab)b = a(bb)       ∀ a, b  ∈ G. 

Using right invertive law on the right we get   (ab)b = b(ba)    

using cross-cancellativity in G we have ab = ba   ∀ a, b  ∈ G ⟹ G is commutative. 

(iv) Let G be an idempotent RA-semigroup. Then    a2 = a   ∀ a,  ∈ G. 

Let G be paramedial  then,    (ab)(cd) = (db)(ca) 

Consider ab =(ab)2 = (ab)(ab) = (bb) (aa) =b2a2 = ba   ⟹   ab = ba   ⟹ G is commutative 

(v)  Let G be a left commutative Ra-semigroup with right cancellativity 

G is left commutative we have ,  (ab)c = (ba)c     ∀ a, b, c   ∈ G. 

cancellativity in G we have    ab = ba   ∀   a, b   ∈ G  ⟹ G is commutative 

(vi) Let G be a right commutative using right RA-semigroup. 

Since G is right commutative we have ,  a(bc) = a(cb)       ∀ a, b, c   ∈ G. 

using left cancellativity in G we have   bc = cb  ⟹ G is commutative. 

A(vii) Let G be an RA-semigroup  with right identity. Then    ae = a   ∀ a,  ∈ G. 

Let G be self-dual then,   ( ab)c = (cb)a 

Consider  ea = (ee)a = (ae)e  = ae = a   ⟹ 𝑒𝑎𝑎 ⟹ e is the left identity  ⟹  e is the identity  

 Now    ab = a(be)=e(ba)= ba   ⟹   ab = ba    ⟹ G is commutative 

(viii) Let G be a left transitive RA-semigroup  

By left transitive condition  in G we have ,    bc = bb.bc 

                                                                   bb.bc = bb(bb.bc)         ( Since  bc=bb.bc). 

Using right invertive law on the right we get   

 bc = bb(bb.bc)  =bc(bb.bb)  = bc.bb = cb      ( by left transitivity in G) 

 Thus     bc = cb     ⟹ G is commutative. 

(ix)  Let G be a right transitive RA-semigroup 

By right transitive condition  in G we have ,    ac =ac.aa =(a.ac)(a.aa) 

Using right invertive law on the right we get   ac = (c.aa)(a.aa)    ( by right  transitivity in G) 

                                                                           = ca      ( by right  transitivity in G) 

 Thus     ac = ca   ⟹ G is commutative. 

In RA-semigroups always commutativity implies associarivity. 

Hence in all the above cases G is associative and hence G is a commutative semigroup. 

 3.6  Theorem: Let G be a left-cancellative RA-semigroup. Then G is transitively commutative.  
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Proof:  Let G be an RA-semigroup. Let a, b, c ∈ G   such that ab = ba and bc = cb. 

     By right invertive law in G we have, 

                                    a(bc) = c(ba)  

  Since   ab = ba  and  bc = cb   we have,           

                                     a(cb) = c(ab) ⟹   b(ca) = b(ac) 

using  left-cancellation we get,  ca = ac 

                    ab = ba and bc = cb   ⟹ ca = ac  ⟹ G is transitively commutative 

3.7  Theorem: Let G be an RA- semigroup. Then G is transitively commutative if , 

(i) G is left transitive 

(ii) G is right transitive 

Proof:  

(i) Let G be a left transitive RA-semigroup ⟹ ac = ba.bc    ∀ a, b, c ∈ G 

 Let ab = ba   and   bc = cb.    

 Now we use the above  assumptions and right invertive law to show that    ac = ca 

Consider   ac = ba.bc  

                       = ba.cb       (bc=cb) 

                       = b(c.ba)        (right invertive law)   

                      = b(a.bc) )        (right invertive law) 

                      = bc.ab)        (right invertive law) 

                      =bc.ba         (ab = ba) 

                      =ca               (G is left transitive) 

ab =ba  &  bc =cb  ⟹  ac = ca    ∀ a, b, c ∈ G 

              ⟹   G is transitively commutative 

(ii) Let G be a right transitive RA-semigroup ⟹ ac = ab.cb    ∀ a, b, c ∈ G 

 Let ab = ba   and   bc = cb.    

 Now we use the above  assumptions and right invertive law to show that    ac = ca 

Consider   ac = ab.cb  

                      = ba.cb       (bc=cb) 

                       = b(c.ba)        (right invertive law) 

                      = b(a.bc) )        (right invertive law) 

                      = b(a.cb)        (bc = cb) 

                      =cb.ab         (right invertive law) 

                     =ca               (G is left transitive) 

ab =ba  &  bc =cb  ⟹  ac = ca    ∀ a, b, c ∈ G   ⟹   G is transitively commutative 
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3.8  Theorem: Let G be a  RA- semigroup with the condition a(bc)=ac for all a, b, c in G. Then G is, 

(i) Left commutative 

(ii) Right commutative 

(iii) Transitively commutative 

Proof:  Let G be an RA-semigroup  

And let a, b , 𝑐 ∈ G   such that  a(bc)=ac 

(i) To show that G is left commutative , we have to show  (ab)c = (ba)c 

 For this consider    (ab)c 

Using  right invertive law, medial law  and slim groupoid  property we show that G is left commutative. 

  (ab)c = (ab)(bb(c)) =c(bb.ab) = c(ba.bb) = c(b(b.ba) = c(b(ba)) =(ba)(bc) =(ba)c 

(ab)c = (ba)c )  ⟹  G is a left commutative RA-semigroup 

(ii) To show that G is right commutative , we have to show  a(bc) = a(cb) 

Using  right invertive law, medial law  and slim groupoid property we show that G is right commutative. 

a(bc) = a(cc(bc)) = a(cb.cc) = a(c(c.cb)) =a(c(cb)) = a(cb)  

 a(bc) =a (cb)   ⟹  G is a right commutative RA-semigroup 

(iii) Let  a, b, c  ∈ G   such that  a(bc)=ac 

and let  ab =ba  &  bc = cb 

Consider    ac = a(bc)  =a(b(bc)) = a(c(bb)) = a(bb) = ab ----(1) 

And      ab = ba =b(ca) =b(c(ca)) = b(a(cc) = b(cc) = bc  ------(2) 

Again  bc =cb =c(ab) =c(a(ab) = c(b(aa)) = c(aa) =ca   ------(3) 

From (1), (2) & (3)  ac = ab =ba =bc =cb = ca ⟹ ac = ca   

     ⟹  G is transitively commutative RA-semigroup 

3.9  Theorem: Let G be an RA-semigroup with the identity  a(bc) = (ac)b  ∀ a, b, c ∈ G.Then G is  left commutative 

Proof:  G is  an RA-semigroup with the identity  a(bc) = (ac)b  ∀ a, b, c ∈ G. 

            Consider  (ab)c = a(cb)   (by the assumption  a(bc) = (ac)b ) 

                                      = b(ca)     (right invertive law) 

                                     = (ba)c      (by the assumption  a(bc) = (ac)b ) 

(ab)c = (ba)c      ∀ a, b, c ∈ G   ⟹   G is left commutative 

 

3.10  Theorem: Let G be (right commutative ) RC-RA-semigroup. Then G is a commutative semigroup if, 

(i)  G  has right identity 

(ii)  G is cancellative 

Proof: G is a right commutative RA-semigroup 

(i)  Let e be the right identity in G 

Consider ab = a(be) = a(eb) = b(ea)= b(ae)=ba  ⟹   G is  commutative 

G is commutative   ⟹   G is associative ⟹   G is commutative semigroup. 

(ii)  G is right commutative  ⟹  a(bc) = a(cb)  ∀ a, b, c ∈ G. 
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  by left cancellativity  we have ,  bc = cb  ⟹   G is  commutative 

 G is commutative   ⟹   G is associative  ⟹   G is commutative semigroup. 

4   ANTI-COMMUTATIVITY OF RA-SEMIGROUPS. 

4.1 Theorem : Let G be an anti-commutative RA-semigroup with right identity  'e ' . Then , 

(i) G is quasi-cancellative. 

(ii) G is unipotent 

(iii) G is RA-3-band 

Proof:  

 Let G be an anti-commutative  RA-semigroup with right identity. Then, ∀   a, b, c  ∈ G we have 

           a(bc) = c(ba)                ------(I) 

          ab = ba ⟹ a=b           ------(II) 

        (ab)c = (ac)b               -------(III) 

        ab =cd  ⟹ ba =dc       -----  (IV) 

(i) Let   a2 = ab ⟹  aa=ab  ⟹ aa=ba   ⟹ ab = ba  ⟹ a=b  (Since G is anti-commutative) 

                a2 = ab   ⟹ a=b              

Similarly let, b2=ba  ⟹ bb=ba ⟹bb=ab ⟹ ba=ab  ⟹ a = b (Since G is anti-commutative) 

       b2 = ba   ⟹  a=b              

Hence G is quasi-cancellative 

(ii)  consider     a2b2 = aa.bb        

By medial law   a2b2  = ab.ab  

By (iv)              b2a2 = ab.ab = aa.bb  =a2b2 

By anti-commutativity in G         b2a2  =   a2b2   ⟹  a2=b2    ⟹  G is unipotent 

(iii)  Consider      a(a.aa)              

         by right invertive law        a(a.aa) = aa.aa       

                    by  ( IV )         (a.aa)a  = aa.aa 

 again using right invertive law on the right,    (a.aa)a =a(a.aa) 

from anti-commutativity property    a.aa =a  ⟹  G is  RA-3-band. 

4.2 Theorem : Let G be an anti-commutative RA-semigroup  . Then , 

 G is transitively commutative. 

Proof: Let G be an anti-commutative RA-semigroup 

And let   a, b, c ∈ G  such that ab = ba  &  bc = cb  

Now we have to show that   ac = ca 

Since G is anti-commutative,  ab = ba   ⟹  a = b 

                                    and       bc = cb    ⟹  b = c  

                          a = b  &  b = c ⟹  a = c  ⟹  ac= ca 

ab = ba  &  bc = cb  ⟹  ac =ca    ⟹  G is transitively commutative. 
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G  is  anti-commutative      ⟹   G is transitively commutative 

4.3 Theorem : Let G be an anti-commutative RA-semigroup  . Then G is an RA-semigroup band if and only if G is locally associative. 

Proof:   

(i) Let G be a RA-semigroup band 

                    then     a2 = a     ∀    a   ∈ G 

clearly   we have    a2a = aa2 ⟹  G is locally associative  

 (ii)  Let  G be locally associative 

        then      a2a = aa2   ∀    a   ∈ G 

By anti- commutativity in G we have   a2 = a     ⟹ G is an  RA-semigroup band 

4.4 Theorem : Let G be an anti-commutative RA-semigroup. If G is paramedial  then  G is, 

(i) Unipotent 

(ii) Rectangular 

Proof: Let G be an anti-commutative paramedial  RA-semigroup 

  (i)  Consider      a2b2 = aa.bb = ab.ab     (medial law) 

                                   =bb.aa        (paramedial law) 

                                   = b2a2  

a2b2 = b2a2 

By anti-commutativity of G , a2b2 = b2a2   ⟹   a2 = b2 

                                                                    ⟹ G is unipotent. 

(ii)  Consider  (ab.ad)(cb.cd) = (aa.bd)(cc.bd)     (medial law) 

                                                = (aa.cc)(bd.bd)     (medial law) 

                                               = (ca.ca)(bd.bd)      (paramedial law) 

                                               = (cc.aa)(bd.bd)     (medial law) 

                                              = (cc.bd)(aa.bd)      (medial law) 

                                              = (cb.cd)(ab.ad)      (medial law) 

               ⟹   (ab.ad)(cb.cd) = (cb.cd)(ab.ad)        

 By anti-commutativity of G    (ab.ad)(cb.cd) = (cb.cd)(ab.ad) ⟹ G is rectangular 
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