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ABSTRACT:

An algebraic structure midway between a groupoid and commutative semigroup appeared in1972. M.A.Kazim and MD.Naseerudin introduced
left almost semigroups as a generalisation of commutative semigroups. They have introduced the braces on the left of the ternary commutative
law abc = cbha to get a new pseudo associative law, i.e., (ab)c = (cb)a. It is since than called left invertive law. A groupoid satisifying the
left invertive law is called a left almost semigroup and is abbreviated as LA- semigroup. Similarly , groupoid satisfying the right invertive
law,a(bc) = c(ba) is called a rightt almost semigroup and is abbreviated as RA- semigroup

In this paper we will prove some of the properties of RA-semigroups. . In this paper in section 2 we define RA-semigroup with examples and
prove some of the basic results. In section 3 we study the properties of commutative and bi-commutative and transitively commutative RA-
semigroups. In 4 we prove some of the properties of the anti-commutative RA-semigroups.

Keywords: RA-semigroup, Commutative RA-semigroups, Bi-commutative RA-semigroup, Anti-commutative RA-semigroup.

1 INTRODUCTION :

The algebraic object encountered in this chapter is a set G with a binary operation ' . ' satisfying right invertive law is same as the algebraic
structure " Right almost semigroup i.e., RA-semigroup” defind by MD.Naseeruddin in his Ph.D theses with the title "Some studies on almost
semigroups and flocks" . He defined RA-semigroup as a groupoid satisfying right invertive law. i.e.,

a(bc) =c(ba) a,b,c,eG
Definition : Let G be anonempty setand ' - ' be a binary operation from GxG —G. Then (G,.) is called an RA-semigroup if it satisfies,

a(bc) =c(ha) v a,b,c,eG
The following multiplication table shows the existence of an RA-semigroup.
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Definition : An RA-semigroup is called a commutative RA-semigroup if ab=ba v a,b € G

Definition : Bi-Commutative RA-semigroup (BC- RA-semigroup) :
An RA-semigroup G is called right commutative RA-semigroup (RC- RA-semigroup) if a(bc) = a(cb), forall v a, b,c, € G.
An RA-semigroup G is called a left commutative RA-semigroup (LC- RA-semigroup ) if  (ab)c = (ba)c, forall ¥ a,b,c,e G
An RA-semigroup G is called a bi-commutative RA-semigroup (BC- RA-semigroup ) if it is both LC- RA-semigroup and RC- RA-semigroup.

Definition : Anti-commutative RA-semigroup: An RA-semigroup G is called anti-commutative RA-semigroup if the identity ,ab=ba = a
=b holds ¥ a,b €G
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Alternative RA-semigroup : An RA-semigroup G is called left alternative RA-semigroup if it satisfies the identity , (aa)b = a(ab). for all a,b
€ G

An RA-semigroup is called right alternative RA-semigroup G if it satisfies the identity, (ab)b = a(bb), forall a,p € G

Self-Dual RA-semigroup : An RA-semigroup which satisfies left invertive law (ab)c = c(ba) for all a,b,c € G s called Self -Dual RA-
semigroup.

Nuclear square : An RA-semigroup G is called left nuclear square if Va,b,c, € G, a?(bc) = (a’b)c. Similarly S is called right nuclear square
if va,b,c, € G, (ab)c? = a(bc?) and middle nuclear square if Va,b,c, € G, (ab?)c = a(bc).

Right transitive RA-semigroup : An RA-semigroup G is called right transitive if , ab.cb =ac forallab,ce G
Left transitive RA-semigroup : An RA-semigroup G is called left transitive if , ab.ac =bc forallab,ce G

Locally associative: An RA-semiroup G is said be locally associative if, a’a=aa®> ¥ a €G

Cancellative RA-semigroup : Let G be an RA-semigroup. If forall a, b ,c, € G, ab=ac = b =c then we say that G is a left cancellative
RA-semigroup

Let G be an RA-semigroup. If forall a, b ,c, € G, ba=ca = b =c then we say that G is a right cancellative RA-semigroup

Let G be an RA-semigroup. If forall a,b,c, € G, ab=ac = b =c,andalso ba=ca= b =c, then we say that G is a
cancellative RA-semigroup

Let G be an RA-semigroup. If forall a,b,c,€ G, ab=ca= b =c,andalso ba=ac = b =c, then we say that G is a cross-
cancellative RA-semigroup

2: SOME BASIC RESULTS ON RA-SEMIGROUPS.
2.1 Lemma : An RA-semigroup G satisfies medial law.
i.e., (@b)(cd) =(ac)(bd) Va,b,ceG.
Proof : Using right invertive law,
(ab)(cd) = d(c(ab)) = d(b(ac) = (ac)(bd)
2.2 Lemma: If right identity 'e' exists in RA-semigroup then it is unique.
Proof : If possible there exists another right identity say f, then
f=fe and ef=e and f=fe=f(ee)=e(ef)=ee=e = f=¢
2.3 Lemma : la an RA-semigroup with right identity, paramedial law holds.
i.e., (ab)(cd)= (db)(ca)
Proof : (ab)(cd) = (ab)((cd)e) =e((cd)(ab)) =e(b(a(cd))) = e(b(d(ca))) = e((ca)(db))
=(db)((ca)e)= (db)(ca).
2.4 Lemma : In an RA-semigroup with right identity e ,

ab=cd < ba=dc
Proof: (i) ab=cd = ba=d

ba = b(ae) = e(ab) = e(cd) = d(ce) = dc.

Similarly we can show that (ba) = (dc) = (ab) = (cd)

2.5 Lemma : If an RA-semigroup G contains a right identity the following law holds (ab)c = (ac)b,.Va,b,c
€eCG.

Proof : (ab)c = (ab)(ce) = e(c(ab)) = e(b(ac)) = (ac)(be) = (ac)b.
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3: ON COMMUTATIVITY OF RA-SEMIGROUPS

3.1 Theorem : An RA-semigroup G is a commutative semigroup iff the following law holds V¥ a, b, c € G.

a(bc)=(ba)c ---- (a)
Proof : (i) Let the given condition (a) holds in G,
and a(bc) =c(ba) ---- (b) (right invertive law )
from (a) and (b), we have
(ba)c =c(ba) = G is commutative.

and a(bc) =(ba)c =(ab)c = Gis associative.
~ G is a commutative semigroup.
(ii) Let G be a commutative semigroup.
then, a(bc) =(ab) =c(ab) =c(ba) =(ba)c = a(bc) = (ba)c
3.2 Theorem : An RA-semigroup with left identity is a commutative semigroup.
Proof : Let G is an RA-semigroup with left identity e .
then, ea=a
ab = a(eb) =b(ea) =ba = ab =ba= G is commutative.
a(bc) =c(ba) =c(ab) =(ab)c  ( Since G is commutative)
a(bc) = (ab)c= G is associative
~ G is a commutative semigroup.
3.3 Theorem: Let G be a RA-semigroup with right identity. If G is left alternative then G is a commutative semigroup.
Proof: G is an RA-semigroup

Let G is left alternative then,

aab=aab Vab €G.
aab=aab=haa = a*bh=h.a?

Now replace a by e we have, e?a=a.e? = a.e =e.a
Since e isthe right identity in G we have a.e =e.a=a = e isthe identityin G
Now by right invertive law and identity in G we have,
ab=a(be) =e(ba)=ba = G is commutative

and by commutativity and right invertive law we have,

a(bc) = c(ba) = c(ab) = (ab)c = G is associative

-~ G is a commutative semigroup
3.4 Theorem : A commutative RA-semigroup is,
(i) Associative
(i) Permutable
(iii Self-Dual
(iv) Bi-commutative

(v) Alternative
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(vi) Paramedial
(vii) Nuclear square
Proof: Let G isacommutative RA-semigroup
(i) Consider a(bc) = c(ba) = c(ab) =(ab)c = a(bc) = (ab)c = G is associative
(ii) Let G be a commutative RA-semigroup, then
Consider a(bc) = c(ba) = c(ab)=b(ac) = (ac)b = a(bc) = b(ac) = Gis right permutable
similarly a(bc)= c(ba)=c(ab)=b(ac) i.e., Gis left permutable.
(iii) Consider a(bc) = c(ba)
By using commutativity on both sides we get,
a(bc) =c(ba) © (bc)a = c(ab) < (ch)a=(ab)c
Right invertive law < Left invertive law. =G is Self-Dual RA-semigroup.

(iv) Consider a(bc) & (ab)c
Since G is commutative ,we have

a(bc) =a(ch)  (commutativity)

(ab)c = (ba)c (commutativity)

= G is Bi-commutative.
(v) a(ab) =b(aa)= (aa)b = G is left alternative.
a(bb) =b(ba)=b(ab)= (ab)o = G is right alternative
= G is an alternative RA-semigroup.
(vi) Consider (ab)(cd) = (cd)(ab) (commutativity)
= (dc)(ba) (commutativity)
= (db)(ca) (medial law)
= G is paramedial
(vii) since Commutativity = Associativity we have,
a?(bc) = (a%b)c, (ab)c? = a(bc?), (ab?)c = a(b%c). ¥a, b, ¢, € G=G is a nuclear square.

3.5 Theorem : Let G be an RA-semigroup. Then G is a commutative semigroup if G satisfies any one of the following.
(i) G is slim RA-semigroup
(if) G is left alternative
(iii) G is right alternative satisfying cross-cancellation
(iv) Idempotent and paramedial
(v) Left commutative with right cancellation
(vi) Right commutative with left cancellation
(vii) Self - dual with right identity
(viii) Left transitive
(ix) Right transitive
Proof: Let G be an RA-semigroup and let a, b, c, € G

(i) Let G be a slim RA-semigroup. Then, a(bc) =ac
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Consider ab = a(bb) =b(ba) = ab= ab =ba= G is commutative.
(ii) Let G be a left alternative RA-semigroup
By left alternativity in G we have, (aa)b =a(ab) Va,b €G.
Using right invertive law on the right we get (aa)b =b(aa) Va,b €G.
= G is commutative.
(iii) Let G is right alternative RA-semigroup satisfying cross-cancellation
Since G is right alternative we have, (ab)b =a(bb) Vva,b €G.
Using right invertive law on the right we get (ab)b = b(ba)
using cross-cancellativity in G we have ab =ba Va,b € G = G is commutative.
(iv) Let G be an idempotent RA-semigroup. Then a?=a Vva, €G.
Let G be paramedial then, (ab)(cd) = (db)(ca)
Consider ab =(ab)?= (ab)(ab) = (bb) (aa) =b%a?=ba = ab=ba = G is commutative
(v) Let G be a left commutative Ra-semigroup with right cancellativity
G is left commutative we have , (ab)c=(ba)c Va,b,c €G.
cancellativity inGwe have ab=ba V a, b € G = G is commutative
(vi) Let G be a right commutative using right RA-semigroup.
Since G is right commutative we have , a(bc) =a(cb) Va,b,c €G.
using left cancellativity in G we have bc =cb = G is commutative.
A(vii) Let G be an RA-semigroup with right identity. Then ae=a Va, €G.
Let G be self-dual then, (ab)c = (cbh)a
Consider ea = (ee)a = (ae)e —ae =a = eaa = e isthe leftidentity = e is the identity
Now ab =a(be)=e(ba)=ba = ab=ba = G iscommutative
(viii) Let G be a left transitive RA-semigroup
By left transitive condition in G we have, bc =bb.bc
bb.bc = bb(bb.bc) ( Since bc=bb.bc).

Using right invertive law on the right we get

bc = bb(bb.bc) =bc(bb.bb) =bc.bb=ch  (by left transitivity in G)

Thus bc=cb = G iscommutative.
(ix) Let G be a right transitive RA-semigroup
By right transitive condition in G we have, ac =ac.aa =(a.ac)(a.aa)
Using right invertive law on the right we get ac = (c.aa)(a.aa) (by right transitivity in G)

=ca (byright transitivity in G)

Thus ac=ca = G iscommutative.
In RA-semigroups always commutativity implies associarivity.
Hence in all the above cases G is associative and hence G is a commutative semigroup.

3.6 Theorem: Let G be a left-cancellative RA-semigroup. Then G is transitively commutative.
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Proof: Let G be an RA-semigroup. Leta, b, c € G such that ab = ba and bc = cbh.
By right invertive law in G we have,
a(bc) = c(ba)
Since ab =ba and bc=ch we have,
a(chb) = c(ab) = b(ca) = b(ac)
using left-cancellation we get, ca = ac
ab =baandbc=ch = ca=ac = G is transitively commutative

3.7 Theorem: Let G be an RA- semigroup. Then G is transitively commutative if ,
(i) G is left transitive
(ii) G is right transitive
Proof:
(i) Let G be a left transitive RA-semigroup = ac =babc Va,b,ceG
Letab=ba and bc=ch.
Now we use the above assumptions and right invertive law to show that ac =ca
Consider ac = ba.bc

=bacb  (bc=ch)

= b(c.ba) (right invertive law)

=b(a.bc)) (right invertive law)

= bc.ab) (right invertive law)

=hc.ba (ab =ha)

=ca (G is left transitive)
ab=ba & bc=cb = ac=ca Va,b,ceG

= G is transitively commutative

(ii) Let G be a right transitive RA-semigroup = ac =ab.cbh Va b, ceG
Letab=ba and bc=ch.
Now we use the above assumptions and right invertive law to show that ac =ca
Consider ac = ab.cb

=bacbhb  (bc=ch)

= b(c.ba) (right invertive law)

=b(a.bc)) (right invertive law)

=b(a.cb) (bc = cb)

=ch.ab (right invertive law)

=ca (G is left transitive)

ab=ba & bc=ch = ac=ca Vab,ceG = Gistransitively commutative
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3.8 Theorem: Let G be a RA- semigroup with the condition a(bc)=ac for all a, b, cin G. Then G is,
(i) Left commutative
(i) Right commutative
(iii) Transitively commutative
Proof: Let G be an RA-semigroup
And leta,b,c € G suchthat a(bc)=ac
(i) To show that G is left commutative , we have to show (ab)c = (ba)c
For this consider (ab)c
Using right invertive law, medial law and slim groupoid property we show that G is left commutative.
(ab)c = (ab)(bb(c)) =c(bb.ab) = c(ba.bb) = c(b(b.ba) = c(b(ba)) =(ba)(bc) =(ba)c
(ab)c = (ba)c) = G is a left commutative RA-semigroup
(i) To show that G is right commutative , we have to show a(bc) = a(cb)
Using right invertive law, medial law and slim groupoid property we show that G is right commutative.
a(bc) = a(cc(bc)) = a(ch.cc) = a(c(c.cb)) =a(c(cb)) = a(ch)
a(bc) =a (cb) = G is aright commutative RA-semigroup
(iii) Let a,b,c € G such that a(bc)=ac
and let ab =ba & bc=cb
Consider ac =a(bc) =a(b(bc)) = a(c(bb)) = a(bb) = ab ----(1)
And  ab = ba =b(ca) =b(c(ca)) = b(a(cc) = b(cc) =bc ------ 2
Again bc =cb =c(ab) =c(a(ab) = c(b(aa)) = c(aa) =ca ------ 3)
From (1), (2) & (3) ac = ab =ba =bc =cb =ca=ac =ca
= G is transitively commutative RA-semigroup
3.9 Theorem: Let G be an RA-semigroup with the identity a(bc) = (ac)b vV a, b, c € G.Then G is left commutative
Proof: Gis an RA-semigroup with the identity a(bc) = (ac)b Vv a, b, c € G.
Consider (ab)c = a(cb) (by the assumption a(bc) = (ac)b)
=b(ca) (rightinvertive law)
=(ba)c (by the assumption a(bc) = (ac)b)

(@ab)c=(ba)c Va,b,ceG = Gisleftcommutative

3.10 Theorem: Let G be (right commutative ) RC-RA-semigroup. Then G is a commutative semigroup if,
(i) G has right identity

(if) G is cancellative

Proof: G is a right commutative RA-semigroup

(i) Let e be the right identity in G

Consider ab = a(be) = a(eb) = b(ea)= b(ae)=ba = G is commutative

G iscommutative = G is associative = G is commutative semigroup.

(if) G isright commutative = a(bc) = a(ch) Va, b, c € G.
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by left cancellativity we have, bc =cb = G is commutative
G is commutative = G is associative = G is commutative semigroup.
4 ANTI-COMMUTATIVITY OF RA-SEMIGROUPS.
4.1 Theorem : Let G be an anti-commutative RA-semigroup with right identity 'e'. Then,
(i) G is quasi-cancellative.
(i) G is unipotent
(iii) G is RA-3-band
Proof:

Let G be an anti-commutative RA-semigroup with right identity. Then, v a, b, ¢ € G we have

a(bc)=c(ba) - ()]
ab=ba=a=b - )
(@b)c=(ach - (nn
ab=cd => ba=dc  ----- (v)

() Let a®>=ab= aa=ab = aa=bha = ab =ba = a=b (Since G is anti-commutative)
a?=ab = a=b
Similarly let, b>=ba = bb=ba =bb=ab = ba=ab = a =b (Since G is anti-commutative)
b?=ba = a=b
Hence G is quasi-cancellative
(i) consider ah? =aa.bb
By medial law a%b? = ab.ab
By (iv) b%a? = ab.ab = aa.bb =a%h?
By anti-commutativity in G b%a? = a’h? = a?=b? = G is unipotent
(iii) Consider a(a.aa)
by right invertive law a(a.aa) = aa.aa
by (1V) (a.aa)a = aa.aa

again using right invertive law on the right, (a.aa)a =a(a.aa)
from anti-commutativity property a.aa=a = G is RA-3-band.
4.2 Theorem : Let G be an anti-commutative RA-semigroup . Then,
G is transitively commutative.
Proof: Let G be an anti-commutative RA-semigroup
Andlet a,b,ce G suchthatab=bha & bc=cb
Now we have to show that ac = ca
Since G is anti-commutative, ab=ba = a=b

and bc=ch = b=c

a=b &b=c= a=c = ac=ca

ab=ba & bc=cbh = ac=ca = G is transitively commutative.
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G is anti-commutative = G is transitively commutative
4.3 Theorem : Let G be an anti-commutative RA-semigroup . Then G is an RA-semigroup band if and only if G is locally associative.
Proof:
(i) Let G be a RA-semigroup band
then a’?=a V¥V a €G
clearly we have a%a=aa?>= G is locally associative
(if) Let G be locally associative
then a%a=aa?> ¥ a €G
By anti- commutativity in G we have a?=a = G isan RA-semigroup band
4.4 Theorem : Let G be an anti-commutative RA-semigroup. If G is paramedial then G is,
(i) Unipotent
(ii) Rectangular
Proof: Let G be an anti-commutative paramedial RA-semigroup
(i) Consider a%?=aabb=ab.ab (medial law)
=bb.aa (paramedial law)
= b?%a?
a2h? = b%a?
By anti-commutativity of G , a?b? =b%a? = a?=0b?
= G is unipotent.

(if) Consider (ab.ad)(ch.cd) = (aa.bd)(cc.bd) (medial law)

= (aa.cc)(bd.bd) (medial law)

= (ca.ca)(bd.bd)  (paramedial law)

= (cc.aa)(bd.bd) (medial law)

= (cc.bd)(aa.bd)  (medial law)

= (cb.cd)(ab.ad) (medial law)

= (ab.ad)(cb.cd) = (ch.cd)(ab.ad)

By anti-commutativity of G (ab.ad)(cb.cd) = (cb.cd)(ab.ad) = G is rectangular
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