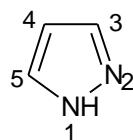


ANTIMICROBIAL AGENTS CONTAINING PYRAZOLE NUCLEUS AND THEIR BIOLOGICAL ACTIVITY

Geeta Yadav^{*1}, Anju Singh¹, Pratima Katiyar¹, Deepti Sachan¹

¹School of Pharmaceutical Sciences, CSJM University, Kanpur, UP (India), 208024

Abstract


Pyrazole and its derivatives is a pharmacologically significant active scaffold with a wide range of pharmacological properties. Pyrazole's aromatic nature and two nitrogen atoms create a five-membered ring structure with diversified activity and stereochemical complexity. Designing novel pyrazole derivatives has become a fascinating research topic due to its biological significance.

This document summarises several biologically active pyrazoles produced by a variety of researchers throughout the world. Pyrazole derivatives have attracted a lot of attention as strong bioactive chemicals having hypoglycemic, analgesic, anti-inflammatory, antibacterial, anticonvulsant, antidepressant, antimycobacterial, bacterial, antioxidant, antiviral, insecticidal, and anticancer properties. They have a wide range of bioactivities, including antibacterial efficacy against a wide range of bacteria strains. , we present antibacterial candidates with pyrazole nuclei that have been integrated with a variety of functions. Pyrazole is a multifunctional lead compound that was produced via chemical architecture for physiologically active compounds. The creation of pyrazole-containing reactions is given several synthetic pathways to yield a novel molecule, which is a huge opportunity in the field of medicinal chemistry.

Key words: Pyrazole, biological activity, Antimicrobial, Bioactive compound.

Introduction

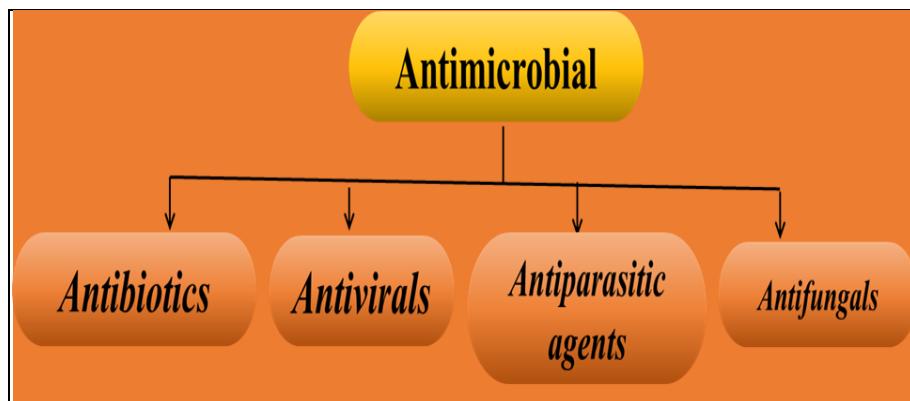
Pyrazoles are five-membered heterocycles that constitute a class of compounds particularly useful in organic synthesis. They are one of the most studied groups of compounds among the azole family [1] General methods of synthesis Ludwig knorr in 1883 studied Pyrazole moieties and substituted pyrazole[34,35,72] figure - pyrazole

Because their structural subunits are found in many natural products such as vitamins, hormones, antibiotics, and alkaloids, as well as medicines, agrochemicals, dyes, and many other substances, heterocycles play an important role in metabolism. [2]

Heterocycles are a very important class of chemicals, accounting for more than half of all organic molecules known.. Heterocycles are present in a wide variety of drugs, most vitamins, many natural products, biomolecules, and biologically active compounds, including antitumor, antibiotic, anti-inflammatory, antidepressant, antimalarial, anti-HIV, antimicrobial, antibacterial, antifungal, antiviral, antidiabetic, herbicidal, fungicidal, and insecticidal agents. [3]

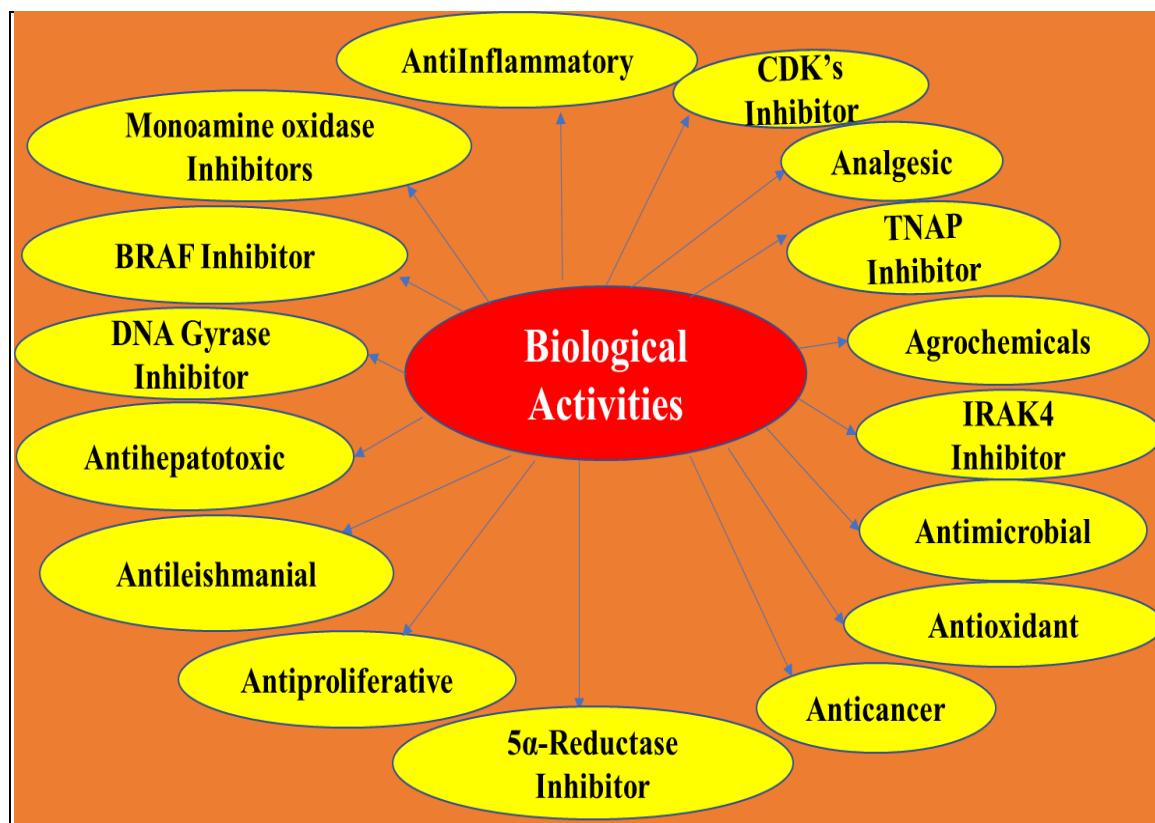
Dyestuff, fluorescent sensors, brightening agents, information storage, polymers, and analytical reagents are only a few of the heterocycles' applications in materials science. They also have uses in supramolecular and polymer chemistry, particularly in conjugated polymers. Moreover, they act as organic conductors, semiconductors, molecular wires, photovoltaic cells, organic light-emitting diodes (OLEDs), light harvesting systems, optical data carriers, chemically controllable switches, and liquid crystalline compounds. [3]

Heterocycles are abundant in nature, and their structural subunits can be found in a wide range of natural products, including vitamins, hormones, antibiotics, and alkaloids, as well as medicines, herbicides, dyes, and a variety of other substances. Green chemistry is increasingly widely used to address the fundamental scientific concerns of preserving human health and the environment while also ensuring commercial viability.. The emerging area of green chemistry envisages minimum hazard as the performance criteria while designing new chemical processes.[4] N-containing heterocycles are molecules which have unique structural motif and found extensively in natural products such as hormones, alkaloids, and vitamins . Pyrazole represents one of the most prominent classes of heterocycles exhibiting large spectrum of biological performances such as anticancer, antitumor , anti-AID, antimicrobial, antimalarial and antitubercular. It attracted a lot of attention because the favoured structure is frequently used as an active ingredient in commercial drugs.. [5]Pyrazoles consist of a doubly unsaturated 5-membered ring containing two nitrogen atoms (1 and 2 positions of the ring) . Knorr synthesized firstly a pyrazole derived compound which led to discovery of antipyrine and its derivatives.


Since the introduction of antipyrine; the first pyrazolone derivative was used in the treatment of pain, inflammation and fever in 1884. Great attention has been focused on pyrazole derivatives as potent anti-inflammatory, analgesic and antipyretic agents .[6] As a result, a vast number of pyrazoles have been discovered, with some of them finding clinical use.. These compounds has diverse biological activities antimicrobial, anticancer, cytotoxic, analgesic, anti-inflammatory, antihypertensive, CNS activity like antiepileptic, antidepressant, etc. Several pyrazole derivatives possess important pharmacological activities and they have been proven as useful materials in drug research. Pyrazole derivatives play an important role among antitumor agents because of their good inhibitory activities against BRAFV600E, EGFR, telomerase, ROS Receptor Tyrosine Kinase and Aurora-A kinase. [6]

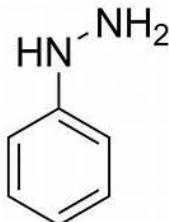
biologically active compounds, including antitumor, antibiotic, anti-inflammatory, antidepressant, antimalarial, anti-HIV, antimicrobial, antibacterial, antifungal, antiviral, antidiabetic, herbicidal, fungicidal, and insecticidal agents [3]. This condition is deteriorated by the emergence of multidrugs resistance (MDR) phenomena. Old antibiotics such as tetracyclines, methicillin, aminoglycosides, macrolides, and penicillin have become less and less effective day by day. For example, drug-resistant *Mycobacterium tuberculosis* and *Staphylococcus aureus* are found [7] biological activity such as anti-cancer, anti-inflammatory, anti-fungal, antibacterial, antiinsecticidal, analgesic, antiviral, anticonvulsant, anti-diabetic, antipyretic, antiarrhythmic, anti-depressant, anti-hyperglycemic, anti-oxidant, herbicidal etc. [8] pyrazoles were shown to inhibit the action of horse liver alcohol dehydrogenase (LADH) and their derivatives are good ADH inhibitors , 4-ethylpyrazole, a less toxic derivative of pyrazole, is even a stronger inhibitor of LADH. Since the discovery that 3-methylpyrazole and 4-ethylpyrazole have potential medicinal value, there has been a rapid growth in synthesizing new derivatives of pyrazole as anticancer.[9] These molecules have potential applications such as antibacterial, antifungal, antibiotics, insecticide, pesticide, biosensors.[10] Many biologically active chemicals, including blockbuster medications like Celebrex2 and Viagra, have the pyrazole motif as their basic structure.

Antimicrobial activity


Medicinal chemists have developed a variety of anti-microbial agents but the graph of resistance against many anti-microbial drugs is increasing day-by-day in many pathogens especially in different strains of bacteria [42]. Novel anti-biotics with new modes of action, high selectivity and efficacy, and shorter treatment times are urgently needed. [43] Pyrazole nucleus is a chemical entity that can be found in a variety of pharmacologically effective medications. One of the best strategies for synthesizing pyrazole rings are annulations commenced by the condensation of a monosubstituted hydrazine with a carbonyl for example, cyclocondensation of α,β -unsaturated carbonyl or 1, 3- dicarbonyl compounds with hydrazines. Following that, a group of scientists developed pharmacologically active pyrazole compounds using both traditional and unconventional methods..The intermediate thus obtained was reacted with hydrazines to give excellent yields of pyrazoles [45]. The bacteriostatic activity of the synthesized heterocycles was evaluated using the two fold serial dilution technique [47]. Two fold serial dilutions of the tested compounds were prepared using the proper nutrient

broth. In particular, they are described as inhibitors of protein glycation, antibacterial, antifungal, anticancer, antidepressant, antiinflammatory, anti-tuberculosis, antioxidant as well as antiviral agents [48,49]Nowadays, pyrazole systems, as biomolecules, have attracted more attention due to their interesting pharmacological properties. Celecoxib [40,]Lonazolac [41], Mepirizole [50], Rimonabant [51], acomplia [52] Cimetidine [53], Fipronil [54], Dexacoxib [55] all chemical drugs give the pharmacological activity.

Biological activities


Infections and diseases may be caused by different types of organisms like bacteria, fungi, and viruses, etc., in humans and animals.

Antibacterial activity

Among the most common infectious diseases are bacterial infections. As a result, almost 50 years of intensive research has been conducted in order to develop novel antibacterial drugs derived from various sources. Despite advances in antibacterial agent development, the rise of multidrug-resistant bacteria has necessitated the creation of new antibacterial agents.[11] Natural antibiotic compounds used in the treatment and prevention of bacterial infection have become indispensable in today's health-care system, helping and supplementing the body's natural immune system in the fight against microbial infections. However, because antibiotics are frequently misused or overused to treat microbial illnesses, certain germs have acquired resistance to them. [2] Plant infections have long been recognised as a global danger to crop productivity, and the use of fungicides has been, is, and will continue to be crucial for controlling most plant diseases in agriculture. e [17]. These drugs contain sulfonamide group as the main moiety have shown antibacterial [28], anti-hyperglycemic [29,30] and anti-inflammatory [31] properties. Celecoxib, rofecoxib, and valdecoxib are sulfonamide derivatives which act as anti-inflammatory agents. Antimicrobial agents are considered one of the most significant milestones in modern medicines. Antibiotic-resistant bacterium infections are becoming more common, and some diseases have developed resistance to numerous types or classes of antibiotics. However, due to an increase in immune-compromised hosts, the incidence of systemic microbial infections has steadily grown..[14].

Natural drug table(antibacterial)

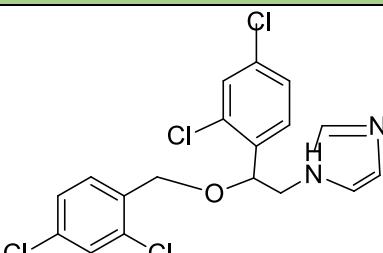
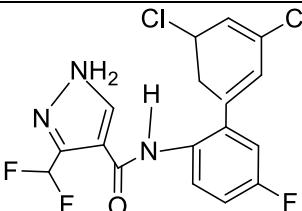
Serial number	Name	Structure	Mechanism of action
1	nitrosamines	$\text{R}_1\text{N}(\text{R}_1)\text{N}=\text{O}$	Nitrosamines exert their toxic and mutagenic effect by alkylating N-7 of guanine, leading to destabilization and increased breakage of DNA
2	Hydrazine		Hydrazine is a drug that conducts the blood pressure lowering effect by vasoconstrictive repression.

Synthetic drug table(antibacterial)

Serial number	name	structure	Mechanism of action
1	cefoselis		It exhibit a wider antibacterial spectrum activity than the third generation drug.
2	,carboxylic acid		Carboxylation is a chemical reaction in which a carboxylic acid is produced by treating a substrate with carbon dioxide. The opposite reaction is decarboxylation.

Antifungal activity

Heterocyclic structures, with their great efficiency, low toxicity, and variety of potential substituents, are undeniably essential features in natural goods, synthetic medications, and insecticides. [18-21]. Pyrazole derivatives, as an important kind of heterocyclic nitrogen compounds, have exhibited a wide range of biological activities whether in the field of pesticides or medicine, such as anticancer [22], anti-inflammatory [23], antifungal [24], insecticidal [25] et al. Structurally, it is not difficult to find that the structure of pyrazole ring is the key part of antifungal activity: bixafen, penflufen, sedaxane, fluxapyroxad, penthiopyrad, benzovindiflupyr, for example. Owing to the importance of the pyrazole-4-carboxamide derivatives in the aspect of antifungal activity and the application of bioisosterism in the design of pyrazolecarboxamide fungicides (Figure 1), we tentatively designed a series of pyrazole-5-carboxamide derivatives, looking forward to obtaining some compounds with excellent fungicidal activities. Figure 1 revealed that bioisosterism can be completely used in the design of pyrazole amide fungicides, which laid a theoretical foundation for our design. Furthermore, considering the application of thiazole and oxazole in commercial pesticides, such as thifluzamide, ethaboxam, thiabendazole, fluesulfone, oxathiapiprolin, pyrisoxazole, isoxaflutole, etoxazole, metamifop et al., we introduced the thiazole ring structure or oxazole ring structures which are taken as an active fragment being widely used in the field of pesticide and medicine as well [27]. Expecting to get high antifungal activity compounds, we obtained bioisosteres by transforming benzothiazole and benzoxazole into phenyl thiazole and phenyl oxazole, then we prepared a series of the target compounds by using the bioisosteres to replace the tert-butylbenzene structure of tebufenpyrad. A series of pyrazole-3-carboxylic acid and pyrazole-3,4-dicarboxylic acid derivatives were synthesized and evaluated for their antibacterial and antifungal activities against five bacterial and five fungal *Candida parapsilosis*, *Candida tropicalis*, and *Candida glabrata* strains [16].



new, more effective, cheaper and safe antimicrobial agents. we continued our previous study and designed new 2H-pyrazoles bearing oxygen-bearing heterocycles targeting telomerase.[38] r, we described the synthesis and the structure-activity relationships of series of aryl-2H-pyrazole derivatives bearing 1,5-benzodioxepine or 1,4-benzodioxan or 1,3-benzodioxole moiety as potential antitumor agents, [38] much attention has been focused towards pyrazoles as antimicrobial,^{2,3} antiviral^{4,5} and anticancer^{6,7} agents after the discovery of the natural pyrazole C-glycoside, pyrazofurin; 4-hydroxy-3-β-dribofuranosyl-1H-pyrazole-5-carboxamide. This antibiotic was reported to possess a broad spectrum of antimicrobial

We do not discuss these here, but instead refer the interested reader to the literature cited. Typically, formation of pyrazoles has involved a suitable cyclocondensation of alkyl- or aryl-substituted carbonyl compounds with hydrazines. [15]

Natural antifungal drug

Serial name	name	structure	Mechanism of action
1	citronella		The hydrogenation reaction of citronellal generally obtain its derivative compounds i.e. menthol.
2	Geraniol		Geraniol is known to be derived from geranyl diphosphate by related synthesis based on a common ionization dependent reaction mechanism.

Synthetic antifungal drug

Serial number	name	Structure	Mechanism of action
1	Miconazoles		It interacts with yeast demethylase, which is cytochrome P-450 enzyme that converts lanosterol to ergosterol.
2	Bixafen		Bixafen, like all the latest generation SDHIs, acts in a similar way to carboxin, through inhibition of mitochondrial respiration chain complex 2.

Antiviral activity:-

Antimicrobial agents are compounds used to kill microorganism or to inhibit their growth and can be grouped according to the microorganisms they act primarily against. Many diseases are indeed caused by the members of these microorganisms and these microbial infection poses a tremendous threat to the human race. Pyrazole and its derivatives have been found to possess various antibacterial, antifungal and antiviral properties. Dihydropyrano[2,3-c]pyrazole derivatives exhibited antimicrobial activity against *Staphylococcus albus*, *Streptococcus pyogenes*, *Klebsiella pneumonia*, *Pseudomonas aeruginosa* and *Candida albicans* and N-thiocabamoylpyrazole derivatives were cyclized to afford the novel pyrazolothiazol-4(5H)-ones (118e-118h) and pyrazolothiazoles (118i-118p). The reported compounds exhibited antiviral activities against several viruses like herpes simplex virus type 1 (KOS) [HSV-1 KOS], herpes simplex virus type 2 (G) [HSV-2G], vaccinia virus [VV], vesicular stomatitis virus [VSV], Coxsackie virus B4 [CV-B4] respiratory syncytial virus [RSV] and parainfluenza-3 virus [PI-3V]. (1) Viral long terminal repeat (LTR) has a critical role in transcription of type 1 human immunodeficiency virus (HIV1) provirus[11]. Inhibition of LTR activity can be a possible pathway for antiviral drug candidates in order to block HIV1 replication [32,33]

Natural antiviral drugs

Serial number	Name	Structure	Mechanism of action
1	Stavudine		Stavudine, a nucleoside analogue of thymidine, inhibits the replication of HIV in human cells in vitro.
2	Lamivudine		Lamivudine must be converted intracellular to its triphosphate form, which then competes with cytosine triphosphate for incorporation into the developing viral DNA strand.

Synthetics antiviral drugs

Serial number	name	structure	Mechanism of action
1	Acyclovir		Acyclovir is converted to its triphosphate form, acyclovir triphosphate, which competitively inhibits viral DNA polymerase, incorporated into and terminates the growing viral DNA chain, and inactivates the viral DNA polymerase.
2	Favipiravir		The main mode of action of favipiravir is exerted either by (1) induction of lethal mutagenesis (2) RNA chain termination and incorporation of viral RNA strand.

Conclusion

Pyrazoles represent a major pharmacophore with various biological properties, and some pyrazole-containing derivatives have already been used for therapeutic purposes. Pyrazole derivatives were successfully synthesized using Vilsmeier–Haack reaction. The main goal of this review is focused on pyrazole heterocyclic ring decorated with various functional groups. These compounds displayed a large spectrum of biological performance, especially as antimicrobial agent. The aim of the present investigation is to synthesize different series of quinoline derivatives which bearing a pyrazole moiety at position 2- to achieve the antimicrobial effect. This current review provides important information for the upcoming design of new antimicrobial agents based pyrazole skeleton.

Reference :-

- 1- Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y.N. and Al-Aizari, F.A., 2018. Synthesis and pharmacological activities of pyrazole derivatives: A review. *Molecules*, 23(1), p.134.;
- 2- Ansari, A., Ali, A. and Asif, M., 2017. Biologically active pyrazole derivatives. *New Journal of Chemistry*, 41(1), pp.16-41.
- 3-Arylglyoxals in Synthesis of Heterocyclic Compounds Bagher Eftekhari-Sis,*,[†] Maryam Zirak,[‡] and Ali Akbari[†] 28, 2012
- 4-Ju, Y. and Varma, R.S., 2006. Aqueous N-heterocyclization of primary amines and hydrazines with dihalides: microwave-assisted syntheses of N-azacycloalkanes, isoindole, pyrazole, pyrazolidine, and phthalazine derivatives. *The Journal of organic chemistry*, 71(1), pp.135-141.
- 5- Ardiansah, B.A.Y.U., 2017. Recent reports on pyrazole-based bioactive compounds as candidate for anticancer agents. *Asian J. Pharm. Clin. Res*, 12, p.45.
- 6-Küçükgüzel, Ş.G. and Şenkardeş, S., 2015. Recent advances in bioactive pyrazoles. *European Journal of Medicinal Chemistry*, 97, pp.786-815.).
- 7- Ardiansah, B.A.Y.U., 2018. A recent update: Antimicrobial agents containing pyrazole nucleus. *Asian J. Pharm. Clin. Res*, 11, pp.88-94.
- 8-Aziz, H., Zahoor, A.F. and Ahmad, S., 2020. Pyrazole bearing molecules as bioactive scaffolds: A review. *Journal of the Chilean Chemical Society*, 65(1), pp.4746-4753.
- 9- Keter, F.K. and Darkwa, J., 2012. Perspective: the potential of pyrazole-based compounds in medicine. *Biometals*, 25(1), pp.9-21.

10- Taslimi, P., Türkan, F., Cetin, A., Burhan, H., Karaman, M., Bildirici, I., Gulcin, I. and Şen, F., 2019. Pyrazole [3, 4-d] pyridazine derivatives: Molecular docking and explore of acetylcholinesterase and carbonic anhydrase enzymes inhibitors as anticholinergics potentials. *Bioorganic Chemistry*, 92, p.103213..

11-Zorofchian Moghadamtousi, S., Abdul Kadir, H., Hassandarvish, P., Tajik, H., Abubakar, S. and Zandi, K., 2014. A review on antibacterial, antiviral, and antifungal activity of curcumin. *BioMed research international*, 2014.

12-Yan, Z., Liu, A., Huang, M., Liu, M., Pei, H., Huang, L., Yi, H., Liu, W. and Hu, A., 2018. Design, synthesis, DFT study and antifungal activity of the derivatives of pyrazolecarboxamide containing thiazole or oxazole ring. *European Journal of Medicinal Chemistry*, 149, pp.170-181.

13- Narasimha Raju, P.V., Rao Saketi, J.M., Balaji, N.V., Kurmarayuni, C.M., Subbaraju, G.V. and Bollikolla, H.B., 2021. Synthesis of New Hispolon Derived Pyrazole Sulfonamides for Possible Antitubercular and Antimicrobial Agents. *Journal of the Mexican Chemical Society*, 65(2), pp.237-246.

14- Viveka, S., Madhu, L.N. and Nagaraja, G.K., 2015. Synthesis of new pyrazole derivatives via multicomponent reaction and evaluation of their antimicrobial and antioxidant activities. *Monatshefte für Chemie-Chemical Monthly*, 146(9), pp.1547-1555.)

15- Singh, R., Kaur, R., Ahlawat, P., Kaushik, P. and Singh, K., 2021. Green Methods for the Synthesis of Pyrazoles: A Review. *Organic Preparations and Procedures International*, 53(4), pp.317-351.

16-Gawade, B. and Farooqui, M., 2017. Alpha-Amylase Inhibitory Assay of Argemone mexicana L. Leaves. *Journal of Chemical and Pharmaceutical Research*, 9(12), pp.25-29..

17Wang, H., Gao, X., Zhang, X., Jin, H., Tao, K. and Hou, T., 2017. Design, synthesis and antifungal activity of novel fenfuram-diarylamine hybrids. *Bioorganic & Medicinal Chemistry Letters*, 27(1), pp.90-93.

18- Liu, X.H., Sun, Z.H., Yang, M.Y., Tan, C.X., Weng, J.Q., Zhang, Y.G. and Ma, Y., 2014. Microwave assistant one pot synthesis, crystal structure, antifungal activities and 3D-QSAR of novel 1, 2, 4-triazolo [4, 3-a] pyridines. *Chemical Biology & Drug Design*, 84(3), pp.342-347.

19- Zhang, L.J., Yang, M.Y., Sun, Z.H., Tan, C.X., Weng, J.Q., Wu, H.K. and Liu, X.H., 2014. Synthesis and antifungal activity of 1, 3, 4-thiadiazole derivatives containing pyridine group. *Letters in Drug Design & Discovery*, 11(9), pp.1107-1111.

20- Hu, Y., Li, C.Y., Wang, X.M., Yang, Y.H. and Zhu, H.L., 2014. 1, 3, 4-Thiadiazole: synthesis, reactions, and applications in medicinal, agricultural, and materials chemistry. *Chemical reviews*, 114(10), pp.5572-5610.

21- Duchowicz, P.R., Vitale, M.G., Castro, E.A., Fernández, M. and Caballero, J., 2007. QSAR analysis for heterocyclic antifungals. *Bioorganic & medicinal chemistry*, 15(7), pp.2680-2689.

22- Ghadbeigi, S., Nasser Ostad, S., Shafiee, A. and Amini, M., 2015. Synthesis and anticancer activity of 1, 3, 5-triaryl-1H-pyrazole. *Letters in Drug Design & Discovery*, 12(9), pp.754-759.

23-Chavan, H.V., Bandgar, B.P., Adsul, L.K., Dhakane, V.D., Bhale, P.S., Thakare, V.N. and Masand, V., 2013. Design, synthesis, characterization and anti-inflammatory evaluation of novel pyrazole amalgamated flavones. *Bioorganic & medicinal chemistry letters*, 23(5), pp.1315-1321.

24- Du, S., Tian, Z., Yang, D., Li, X., Li, H., Jia, C., Che, C., Wang, M. and Qin, Z., 2015. Synthesis, antifungal activity and structure-activity relationships of novel 3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic acid amides. *Molecules*, 20(5), pp.8395-8408. 3-(Difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic Acid Amides, Molecules, 20 (2015) 8395-8408.

25- Fu, C., Pei, J., Ning, Y., Liu, M., Shan, P., Liu, J., Li, Y., Hu, F., Zhu, Y., Yang, H. and Zou, X., 2014. Synthesis and insecticidal activities of novel pyrazole oxime ether derivatives with different substituted pyridyl rings. *Pest management science*, 70(8), pp.1207-1214.

26-Ryu, C.K., Lee, R.Y., Kim, N.Y., Kim, Y.H. and Song, A.L., 2009. Synthesis and antifungal activity of benzo [d] oxazole-4, 7-diones. *Bioorganic & medicinal chemistry letters*, 19(20), pp.5924-5926.

27- Kuneš, J., Balšánek, V., Pour, M. and Buchta, V., 2001. Synthesis and antifungal activity evaluation of 3-hetaryl-2, 5-dihydrofuran-2-ones. an unusual fragmentation of the oxazole ring via 2, 3-selenoxide shift. *Collection of Czechoslovak chemical communications*, 66(12), pp.1809-1830.

28- Raju, P.V.N., Saketi, J.M.R., Balaji, N.V., Kurmarayuni, C.M., Subbaraju, G.V. and Bollikolla, H.B., 2021. Cómo citar Buscar Synthesis of New Hispolon Derived Pyrazole Sulfonamides for Possible Antitubercular and Antimicrobial Agents Journal of the Mexican Chemical Society, vol. 65, no. 2, 2021 Sociedad Química de México AC. *Journal of the Mexican Chemical Society*, 65(2)

29-Park, S. and Choi, K., 2008. Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems. *Ecotoxicology*, 17(6), pp.526-538.

30-Raju, P.V.N., Saketi, J.M.R., Balaji, N.V., Kurmarayuni, C.M., Subbaraju, G.V. and Bollikolla, H.B., 2021. Cómo citar Buscar Synthesis of New Hispolon Derived Pyrazole Sulfonamides for Possible Antitubercular and Antimicrobial Agents Journal of the Mexican Chemical Society, vol. 65, no. 2, 2021 Sociedad Química de México AC. *Journal of the Mexican Chemical Society*, 65(2).

31- VIGOR Study Group, 2000. Bombardier C, Laine L, Reicin A, Shapiro D, Burgos-Vargas R, Davis B, et al. Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. *New Engl J Med*, 343, pp.1520-8.,

32- Singh, R.K., Rai, D., Yadav, D., Bhargava, A., Balzarini, J. and De Clercq, E., 2010. Synthesis, antibacterial and antiviral properties of curcumin bioconjugates bearing dipeptide, fatty acids and folic acid. *European journal of medicinal chemistry*, 45(3), pp.1078-1086.

33-Nabel, G.J., Rice, S.A., Knipe, D.M. and Baltimore, D., 1988. Alternative mechanisms for activation of human immunodeficiency virus enhancer in T cells. *Science*, 239(4845), pp.1299-1302.

34- Knorr, L., 1883. Einwirkung von acetessigester auf phenylhydrazin. *Berichte der deutschen chemischen Gesellschaft*, 16(2), pp.2597-2599.

35- Pechmann, H.V., 1894. Ueber Diazomethan. *Berichte der deutschen chemischen Gesellschaft*, 27(2), pp.1888-1891.

36- Shabalala, S., Maddila, S., van Zyl, W.E. and Jonnalagadda, S.B., 2016. A facile, efficacious and reusable Sm₂O₃/ZrO₂ catalyst for the novel synthesis of functionalized 1, 4-dihydropyridine derivatives. *Catalysis Communications*, 79, pp.21-25.

37-Deng, X. and Mani, N.S., 2006. Reaction of N-monosubstituted hydrazones with nitroolefins: A novel regioselective pyrazole synthesis. *Organic Letters*, 8(16), pp.3505-3508.

38-Elguero, J., Goya, P., Jagerovic, N. and Silva, A.M.S., 2002. Pyrazoles as drugs: facts and fantasies. *Targets in Heterocyclic Systems*, 6, pp.52-98.-.

39-Bell, A.S., 1996. European Patent 0 463 756 A1, 1992.(b) Terrett, NK; Bell, AS; Brown, D.; Ellis, P. *Bioorg. Med. Chem. Lett*, 6, p.1819.

40-Abdellatif, K.R., Fadaly, W.A., Elshaier, Y.A., Ali, W.A. and Kamel, G.M., 2018. Non-acidic 1, 3, 4-trisubstituted-pyrazole derivatives as I onazolac analogs with promising COX-2 selectivity, anti-inflammatory activity and gastric safety profile. *Bioorganic Chemistry*, 77, pp.568-578.).

41- Onoa, G.B. and Moreno, V., 2002. Study of the modifications caused by cisplatin, transplatin, and Pd (II) and Pt (II) mepirizole derivatives on pBR322 DNA by atomic force microscopy. *International Journal of Pharmaceutics*, 245(1-2), pp.55-65.

42- Aziz, H., Zahoor, A.F. and Ahmad, S., 2020. Pyrazole bearing molecules as bioactive scaffolds: A review. *Journal of the Chilean Chemical Society*, 65(1), pp.4746-4753.

43-Aziz, H., Zahoor, A.F. and Ahmad, S., 2020. Pyrazole bearing molecules as bioactive scaffolds: A review. *Journal of the Chilean Chemical Society*, 65(1), pp.4746-4753.

44- Naim, M.J., Alam, O., Farah Nawaz, M., Alam, J. and Alam, P., 2016. Current status of pyrazole and its biological activities. *Journal of pharmacy & bioallied sciences*, 8(1), p.2.,

45-Heller, S.T. and Natarajan, S.R., 2006. 1, 3-Diketones from acid chlorides and ketones: a rapid and general one-pot synthesis of pyrazoles. *Organic Letters*, 8(13), pp.2675-2678.

46- F Abdel-Wahab, B., A Farahat, A., EA Awad, G. and A El-Hiti, G., 2017. Synthesis and antimicrobial activity of some novel substituted 3-(thiophen-2-yl) pyrazole-based heterocycles. *Letters in Drug Design & Discovery*, 14(11), pp.1316-1323.

47- Miles, R.S. and Amyes, S.G.B., 1996. Laboratory control of antimicrobial therapy. *Mackie and McCartney practical medical microbiology*, 14, pp.151-178

48-Fustero, S., Sanchez-Rosello, M., Barrio, P. and Simon-Fuentes, A., 2011. From 2000 to mid-2010: a fruitful decade for the synthesis of pyrazoles. *Chemical reviews*, 111(11), pp.6984-7034.

49- Ansari, A., Ali, A. and Asif, M., 2017. Biologically active pyrazole derivatives. *New Journal of Chemistry*, 41(1), pp.16-41.

50- Porcu, A., Melis, M., Turecek, R., Ullrich, C., Mocci, I., Bettler, B., Gessa, G.L. and Castelli, M.P., 2018. Rimonabant, a potent CB1 cannabinoid receptor antagonist, is a Gai/o protein inhibitor. *Neuropharmacology*, 133, pp.107-120.

51- Shi, C., Ma, C., Ma, H., Zhou, X., Cao, J., Fan, Y. and Huang, G., 2016. Copper-catalyzed synthesis of 1, 3, 4-trisubstituted and 1, 3, 4, 5-tetrasubstituted pyrazoles via [3+ 2] cycloadditions of hydrazones and nitroolefins. *Tetrahedron*, 72(27-28), pp.4055-4058.

52-Etaee, F., Tobin, M., Vuppala, S., Komaki, A., Delisle, B.P., Di Biase, L., Catanzaro, J.N., Natale, A. and Elayi, C.S., 2021. Effects of opioid receptor agonist and antagonist medications on electrocardiogram changes and presentation of cardiac arrhythmia. *Journal of Interventional Cardiac Electrophysiology*, pp.1-30.

53-Huang, Q., Tran, G., Pardo, D.G., Tsuchiya, T., Hillebrand, S., Vors, J.P. and Cossy, J., 2015. Palladium-catalyzed phosphorylation of pyrazoles substituted by electron-withdrawing groups. *Tetrahedron*, 71(39), pp.7250-7259.

54- Mullins, K.B., Thomason, J.M., Lunsford, K.V., Pinchuk, L.M., Langston, V.C., Wills, R.W., McLaughlin, R.M. and Mackin, A.J., 2012. Effects of carprofen, meloxicam and deracoxib on platelet function in dogs. *Veterinary Anaesthesia and Analgesia*, 39(2), pp.206-217.

55- Gamal El-Din, M.M., El-Gamal, M.I., Abdel-Maksoud, M.S., Yoo, K.H., Baek, D., Choi, J., Lee, H. and Oh, C.H., 2016. Design, synthesis, and in vitro antiproliferative and kinase inhibitory effects of pyrimidinylpyrazole derivatives terminating with arylsulfonamido or cyclic sulfamide substituents. *Journal of Enzyme Inhibition and Medicinal Chemistry*, 31(sup2), pp.111-122.