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Abstract In order to proactively identify potential problems before they disrupt production systems, software defect prediction is 

essential. This abstract offer a thorough examination of a novel method for improving software defect prediction that combines the 

advantages of deep learning and machine learning. When they appear in production environments, software flaws can be expensive 

and disruptive. This project introduces a hybrid methodology that uses the strength of deep learning and machine learning to reduce 

these risks. To be more precise, we use Stack Sparse Autoencoders to extract useful features from the dataset, which are then used as 

inputs for classic machine learning algorithms like Gradient Boosting and Random Forest. We conduct numerous experiments to assess 

the efficiency of our hybrid strategy. We evaluate the predictive accuracy of the encoded features using datasets from a NASA repository 

that contain actual software defect data. The outcomes unmistakably show that our methodology produces better results than more 

established methods for defect prediction. Our models consistently achieve higher accuracy and offer useful insights into software defect 

identification by utilizing the rich feature representation learned by the deep learning component. Organizations can proactively 

identify software defects, priorities their remediation efforts, and improve overall software reliability by integrating deep learning and 

machine learning. Additionally, our method offers a useful framework for utilizing artificial intelligence's benefits in software 

development workflows. 
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1.  Introduction 

Making sure the software works well and doesn't cost too much 

to maintain is a major concern in today's world of computer 

program creation. By concentrating on "software defect 

prediction," a method intended to find potential problems in 

software systems before they become significant issues, this 

study addresses a significant challenge. This study aims to 

improve software defect prediction by utilizing a novel strategy 

that fuses the benefits of deep learning and machine learning 

techniques. This innovative combination of cutting-edge 

techniques has the potential to revolutionize defect detection 

and advance efficient software development practices. 

The Importance of Software Defect Prediction: Consider 

software flaws as minor errors or bugs that can cause programs 

to behave oddly or perform incorrectly. . Later in the software 

development process, finding and fixing these issues can be 

time- and money-consuming. Software defect prediction 

becomes an essential tool in this situation. It aids in the early 

detection of potential issues, such as the discovery of a small dam 

crack before it results in a flood. Software can function more 

effectively, and we can save a lot of money by identifying and 

resolving these problems early on. 

Deep learning and machine learning combined: We require clever 

tools to assist us in identifying issues as software grows more 

complex. These intelligent tools are similar to deep learning and 

machine learning. Deep learning is excellent at analyzing large 

amounts of data and identifying patterns. Making educated 

guesses based on patterns it has previously observed is a skill of 

machine learning. We are developing a super-smart system for 

foretelling software issues by combining deep learning and 

machine learning. 

Stack Sparse Autoencoder's (SSAE) Function: The Stack Sparse 

Autoencoder (SSAE) is a vital component of our strategy. 

Consider searching for the most crucial pieces to a large jigsaw 

puzzle in order to solve it. SSAE uses software data in this way. 
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Similar to how you solve a puzzle by concentrating on the most 

crucial pieces first, it takes the most important components and 

makes sense of them. It makes a large amount of information 

easier to understand and is the most crucial component. It's 

similar to tracking down the crucial hints in a mystery. This 

assistant is adept at recognizing the complex patterns in the data, 

which makes it simpler to understand where issues could 

possibly arise. This makes the process much quicker and smarter 

and helps us identify potential problem areas. 

Making Better Predictions Together: We employ the Random 

Forest (RF) and Gradient Boosting (GB) classifiers as two unique 

teamwork techniques to further enhance our software problem 

predictions. These teamwork techniques resemble the 

combining of many different ideas to make better educated 

guesses. The RF method creates numerous decision trees and 

combines their educated guesses. The GB method builds and 

enhances each subsequent poor guess until it produces a strong 

guess. Our prediction is even more precise and dependable 

thanks to these teamwork techniques. 

Preparing by Preprocessing: Real-world data is a little 

disorganized, but we have tools to tidy it up before we foresee 

issues. To balance the data and make sure we're not 

concentrating on just one thing, we use a tool called SMOTE. It's 

like making sure a recipe has a balanced mixture of ingredients. 

Additionally, we use Min-Max scaling to ensure that all the data 

is within the same range, which helps our tools comprehend it 

better and enable faster prediction. 

In this study, a novel and clever method for forecasting software 

issues is presented. The Stack Sparse Autoencoder, RF, and GB 

are used for understanding, along with deep learning and 

machine learning techniques, as well as smart preprocessing for 

data cleaning. By combining all these techniques, we hope to 

become adept at identifying issues before they have a significant 

impact. 

2. Literature review   

To increase the quality and dependability of software systems, 

researchers have been working on the challenging task of 

software defect prediction using machine learning and deep 

learning algorithms. These algorithms face several difficulties 

even though they have shown promise in the detection and 

prediction of defects. Let's look at some of the major issues and 

recommendations made by researchers: 

2.1. Insufficient or Imbalanced Data:  

([1] Wang & Yao, 2013) insufficient or unbalanced data as a 

problem. The crucial problem of data imbalance in software 

defect prediction is examined in this essay. In software defect 

prediction, unbalanced datasets are common because there are 

significantly more instances of non-defective code than 

defective code. The authors suggest using the Synthetic 

Minority Over-sampling Technique (SMOTE) to address this 

problem.  

 

Drawbacks: SMOTE has drawbacks even though it is good at 

balancing datasets. The introduction of synthetic samples, which 

might not accurately reflect the underlying data distribution, is 

the main cause for concern. SMOTE's parameters must be 

carefully considered because improperly set values can cause 

over-generalization or the production of noisy samples. SMOTE 

might also not function at its best when dealing with datasets that 

have extremely imbalanced data distributions or complex data 

distributions. 

2.2.  Feature Selection and Engineering: 

([2] Kakkar & Jain, 2016)In the context of predicting software 

defects, this paper offers a thorough review of feature selection 

techniques. It divides these methods into filter, wrapper, and 

embedded categories and discusses each one's advantages and 

disadvantages. [6](Muthukrishnan & Rohini, 2017)The goal of the 

study is to help researchers and practitioners choose the best 

feature selection methods for their individual defect prediction 

tasks. 

Drawbacks: Although the review paper provides insightful 

analysis of feature selection techniques, it does not offer specific 

suggestions for picking the approach that is best suited for a given 

dataset or context. Its utility could be increased by providing clear 

guidelines for feature selection in software defect prediction. 

2.3. Generalization and Overfitting: 

([3] Thanapol et al., 2020) The problem of overfitting in software 

defect prediction models is discussed in this research paper. 

When a model learns noise from training data and struggles to 

generalize to new data, it is said to be overfit. The authors present 

regularization methods, such as L1 and L2 regularization, to 

address this issue. These methods encourage simpler models and 

penalize complex ones, increasing the generalizability of the 

models beyond the training set. 

Drawbacks: Although the paper effectively addresses overfitting, 

it does not go into enough detail about the trade-offs related to 

determining the degree of regularization. Since it depends on 

various elements including the dataset's size, quality, and the 

complexity of the underlying data distribution, choosing the right 

level of regularization can be difficult.  

2.4. Data Imbalance problems will affect the model 

performance." 

([4] Song et al., 2019) the prediction of software bugs while 

preserving the best model performance. They conducted their 

research using the Naive Bayes and Random Forest machine 

learning algorithms. They used information from the publically 

available PROMISE repository. Their study's findings exposed 

the negative effects of data imbalance on model performance, 

highlighting the challenges in creating an effective defect 

prediction model. 
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2.5. Metrics: - 

([5] Malhotra, 2015) concentrated on defect prediction using 

several datasets. Their study brought to light the prevalence of 

software defect metrics that are frequently used to evaluate the 

efficacy of prediction models. Accuracy, recall, precision, and 

AUC measures were a few of the frequently used metrics. 

Malhotra also added a "miscellaneous" category for metrics that 

were applied less frequently. Additionally, Malhotra's study 

evaluated several machine learning models for the task of 

software defect prediction. 

 

3. Problem statement: - 

Numerous techniques have been used to address the issue of 

inconsistent data, which can be broadly categorized as 

algorithmic or data-level solutions. Data sampling methods to 

measure class distributions, such as under sampling or 

oversampling, are included in data-level solutions. This article 

examines four oversampling experiences and focuses on the 

oversampling procedure. 

3.1. Class Imbalance: - 

To solve the problem of inconsistent data, many methods have 

been adopted, broadly classified as algorithmic or data-level 

solutions. Data-level solutions include data sampling 

techniques to measure class distributions, such as under 

sampling or oversampling. This article focuses on the 

oversampling process and discusses four experiences of the 

oversampling process. 

 

3.1.1. Existing Oversampling Techniques (Other than 

SMOTE): 

Borderline-SMOTE: 

Summary: An addition to SMOTE called Borderline-SMOTE is 

intended to concentrate on the minority class's borderline 

instances. Only those instances that are close to the decision 

boundary are selected for the generation of synthetic samples. 

ADASYN (Adaptive Synthetic Sampling): 

An adaptive oversampling method called ADASYN creates 

more synthetic samples for challenging-to-classify minority 

class instances. The instances that are further away from the 

decision boundary are given more weight. 

Safe-Level SMOTE: 

Safe-Level SMOTE seeks to maintain the "safe" instances—

those that are simple to correctly classify—while balancing the 

dataset. It avoids producing synthetic samples for instances 

that are safe in favor of concentrating on producing them for 

instances that are close to the borderline. 

 

 

 

 

 

3.1.2. Drawbacks of Existing Oversampling Techniques: 

Borderline-SMOTE: 

Drawback: Borderline-SMOTE, while effective in generating 

synthetic samples for borderline instances, may not perform 

optimally when the dataset contains a mix of borderline and safe 

instances. It may not adequately handle the imbalanced 

distribution within the minority class. 

ADASYN: 

Drawback: ADASYN's adaptive approach can lead to an increase 

in computational complexity. The technique may require 

significant computational resources, especially when applied to 

large datasets. 

Safe-Level SMOTE: 

Drawback: Safe-Level SMOTE focuses on preserving safe 

instances but may not generate enough synthetic samples for 

borderline instances. This approach might not fully address the 

class imbalance issue when the dataset contains a substantial 

number of borderline cases. 

 

3.1.3. How SMOTE Overcomes the Drawbacks of Existing 

Oversampling Techniques: 

Handling Various Cases: Standard SMOTE provides a balanced 

approach to oversampling by generating synthetic samples for all 

minority class instances, regardless of their proximity to the 

decision boundary. This makes it suitable for datasets with 

varying levels of imbalance and complexity. 

Reduced Complexity: Compared to ADASYN, which adapts to 

the difficulty of classification, SMOTE typically has lower 

computational complexity. It generates synthetic samples 

uniformly, making it more computationally efficient for many 

practical applications. 

Balanced Approach: SMOTE's balanced approach ensures that all 

minority class instances receive synthetic samples, including 

borderline instances. This helps in addressing class imbalance 

comprehensively, even when the dataset contains a mix of safe 

and borderline instances. 

 

In summary, while Borderline-SMOTE, ADASYN, and Safe-Level 

SMOTE provide specialized approaches for oversampling, they 

come with certain drawbacks related to handling complex cases, 

computational complexity, and the preservation of specific 

instance types. SMOTE, on the other hand, offers a balanced and 

versatile oversampling technique that can effectively address 

class imbalance in a wide range of scenarios. 
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3.2. Deep Learning Models 

3.2.1 Existing Deep Learning Algorithms: 

CNNs (Convolutional Neural Networks): CNNs are specialized 

neural networks created for processing grid-like data, 

particularly images. To extract hierarchical features, they use 

convolutional layers, and they are widely used in computer 

vision tasks. 

Long Short-Term Memory networks (LSTMs): 

LSTMs are a type of recurrent neural network (RNN) designed 

for sequential data, such as time series and natural language. 

They excel in capturing long-term dependencies. 

 

Deep Neural Networks (DNNs): 

DNNs are general-purpose neural networks with multiple 

hidden layers, used for various tasks like classification, 

regression, and feature extraction. 

 

3.2.2 Drawbacks of Existing Deep learning Models: - 

Convolutional Neural Networks (CNNs): 

Drawbacks: CNNs require large amounts of labeled data for 

training, and they might overfit when data is limited. They may 

not be suitable for non-grid data and sequential data. 

 

Long Short-Term Memory networks (LSTMs): 

Drawbacks: Training LSTMs can be computationally expensive 

and slow. They suffer from vanishing and exploding gradient 

problems and require substantial data for effective training. 

 

Deep Neural Networks (DNNs): 

Drawbacks: DNNs need substantial labeled data, and they can 

overfit, especially in high-dimensional settings. They may not 

handle sequential or grid data as effectively as specialized 

models. 

  

3.2.3 How SSAE Overcomes the Drawbacks of Existing Deep 

learning models: 

Sparse Representation: SSAE encourages sparse feature 

representations, capturing essential data characteristics while 

discarding noise. 

Unsupervised Learning: SSAE can learn from data without 

requiring labeled examples, making it suitable for tasks with 

limited labeled data. 

Data Compression: SSAE naturally compresses data, reducing 

storage requirements and enhancing processing speed. 

Versatility: SSAE can be applied to various data types, 

including sequential, unstructured, and structured data. 

In summary, while CNNs, LSTMs, and DNNs excel in specific 

domains, SSAE stands out for feature extraction and data 

compression, especially in scenarios with limited labeled data, 

where sparsity and unsupervised learning are essential. SSAE's 

ability to create compact, informative data representations 

makes it valuable for reducing dimensionality and improving 

data analysis efficiency. The choice of algorithm should consider 

the specific task and data characteristics. 

 

3.3. Machine learning classifiers 

Machine learning classifiers are algorithms that learn patterns 

and relationships in data to make predictions or decisions. Here 

are three common classifiers and their advantages: 

3.3.1 Existing Machine Learning Classifiers and Their 

Advantages 

Logistic Regression: 

Simplicity and Interpretability: Logistic regression is easy to 

understand and interpret, making it a great choice for beginners 

and when model interpretability is essential. 

Efficiency: It works well with large datasets and training times are 

relatively quick. 

Linear Separability: Effective when the decision boundary is 

approximately linear. 

Support Vector Machines (SVM): - 

Effective in High-Dimensional Spaces: SVM can handle datasets 

with a high number of features and find complex decision 

boundaries. 

Robust to Outliers: SVM is less sensitive to outliers compared to 

some other classifiers. 

Naive Bayes: - 

Simple and computationally efficient. 

Works well with high-dimensional data. 

 

3.3.2 Drawbacks of Existing Machine Learning Classifiers 

While existing machine learning classifiers offer advantages, they 

also present challenges when applied to software defect 

prediction: 

Limited Feature Representation: 

Some classifiers may struggle to effectively represent complex 

software features, leading to reduced prediction accuracy. 

Imbalanced Data: 

Software defect datasets often have imbalanced classes, making it 

difficult for classifiers to learn the minority class adequately. 

High Dimensionality: 

In software defect prediction, the feature space can be large and 

noisy, making it challenging for some classifiers to discern 

relevant patterns. 

Sensitive to Hyperparameters: 

Many classifiers are sensitive to hyperparameters, requiring fine-

tuning for optimal performance, which can be time-consuming 

and resource-intensive. 
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3.3.3 Overcoming Challenges Using Random Forest and 

Gradient Boosting Classifiers 

To address the challenges posed by existing classifiers in 

software defect prediction, leveraging Random Forest and 

Gradient Boosting classifiers can be beneficial: 

 

Random Forest: 

Random Forest handles high dimensionality well, effectively 

dealing with noisy and irrelevant features in software defect 

prediction. 

Its ensemble nature helps in mitigating overfitting and 

improving prediction accuracy, especially with imbalanced 

datasets. 

Parameter tuning in Random Forest is relatively 

straightforward, making it easier to optimize performance. 

 

Gradient Boosting: 

Gradient Boosting is resilient to overfitting and performs well 

even with complex feature spaces common in software defect 

prediction. 

It excels in handling imbalanced data by giving more weight to 

misclassified samples, thus enhancing prediction of the 

minority class. 

Through ensemble learning and weak learner integration, 

Gradient Boosting can effectively model software defect 

patterns and achieve high prediction accuracy. 

By leveraging these advanced classifiers, we can enhance 

software defect prediction and address the challenges posed by 

traditional classifiers. 

 

4. Proposed Model: - 

Our proposed model for software defect prediction combines 

the power of deep learning and machine learning algorithms. 

The primary algorithm we employ is the Stack Sparse 

Autoencoder (SSAE) for effective feature extraction and 

dimensionality reduction. SSAE helps capture the underlying 

structure and patterns in software code, enabling the 

identification of potential defects. 

We applied two well-known machine learning classifiers, 

Random Forest (RF) and Gradient Boosting (GB), to predict 

software defects. While GB iteratively develops weak learners 

into powerful predictors, RF is an ensemble learning approach 

that uses decision trees to make predictions. Our model can 

successfully handle complex data and make precise predictions 

by incorporating RF and GB. 

 

A.) Insufficient or Imbalanced Data:  

To tackle the challenge of data imbalance, we utilize the 

Synthetic Minority Over-sampling Technique (SMOTE). 

SMOTE generates synthetic instances for the minority class by 

interpolating between existing minority class samples. It selects 

a minority sample and finds its k-nearest neighbors (usually k=5) 

in feature space. Then, it creates new synthetic samples by taking 

linear combinations of the selected sample and its neighbors. 

 SMOTE generates synthetic instances of the minority class, 

balancing the dataset and preventing bias towards the majority 

class. This technique enhances the model's ability to accurately 

detect defects in software systems. 

B.) Feature Selection and Engineering: 

Furthermore, we employ data preprocessing techniques to 

optimize the model's performance. Specifically, we use min-max 

scaling to normalize the input features. Min-max scaling 

transforms the feature values to a common range, mitigating the 

impact of varying scales and improving convergence during 

training. 

C.) Overfitting: Overfitting occurs when a model learns to 

perform very well on the training data, but it does so at the cost 

of performing poorly on unseen data. In other words, an overfit 

model learns the noise and random fluctuations in the training 

data, rather than the true underlying patterns. This often leads to 

a model that is overly complex and highly tailored to the training 

data, and as a result, it fails to generalize to new data. Overfitting 

is a common pitfall in  

machine learning, and it can be detrimental to a model's 

performance. 

D.) Regularization: 

Regularization is a method for avoiding overfitting by 

introducing a penalty term to the loss function of the model. The 

model is encouraged to have smaller parameter values by this 

penalty, which deters it from fitting the training data too closely. 

G.) Hyperparameter Tuning: Optimize hyperparameters for 

each component (SSaE, RF, and GB) to achieve the best 

performance. 

 

Through the integration of SSAE for feature extraction, RF and 

GB for classification, SMOTE for data imbalance, and min-max 

scaling for data preprocessing, our proposed model offers a 

comprehensive approach to software defect prediction. 

 

 

4.1 Architecture: - 

 

 

 

 

 

 

 

 

 

                                       Stacked sparse auto encoder.   
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A sparse autoencoder is a type of artificial neural network that 

learns to encode input data into a compressed representation 

and then decode it back to its original form. The sparsity 

constraint encourages the autoencoder to use only a small 

number of neurons in the hidden layer, resulting in a more 

efficient representation. 

Here's an example architecture for a stack of sparse 

autoencoders: 

Input layer:  This layer represents the input data to be encoded. 

Its size depends on the dimensionality of the input data. 

Encoding layers: These layers consist of the hidden layers of the 

autoencoder. Each layer takes the output of the previous layer 

and applies a non-linear activation function to create a 

compressed representation of the input data. The number of 

neurons in each encoding layer progressively decreases to create 

a bottleneck effect, forcing the autoencoder to capture the most 

salient features. 

Sparsity constraint: The sparsity constraint is typically enforced 

by adding a penalty term to the loss function of the autoencoder. 

This penalty encourages the network to have a small number of 

active neurons in the hidden layers, promoting sparse 

representations. 

Decoding layers: These layers mirror the encoding layers but in 

reverse order. They take the compressed representation and 

reconstruct the original input data by applying another set of 

non-linear activation functions. 

Output layer: This layer produces the reconstructed output, 

which should ideally match the original input. 

 

The stack of sparse autoencoders can be trained layer by layer 

in a greedy manner. Each layer is pretrained as an autoencoder 

independently, with the previous layers frozen. Once all the 

layers are pretrained, the entire stack can be fine-tuned using 

backpropagation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 System Architecture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

System Architecture 

4.3 Datasets 

 

 

 

 

 

 

                    Dataset details  

 

For our project software defect prediction, we taken our datasets 

from the NASA repository, The NASA PROMISE Repository is a 

public dataset repository that provides a collection of software 
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engineering datasets for research purposes. The repository was 

established in 2006 as part of the NASA Software Engineering 

Laboratory’s research activities and contains datasets from 

various domains of software engineering.  

The datasets are designed to support the development and 

evaluation of software engineering techniques, including 

software defect prediction, software effort estimation, software 

quality assurance, and software maintenance. The PROMISE 

repository currently contains over 50 datasets from various 

software engineering domains. The datasets are collected from 

publicly available sources, such as open-source software 

repositories, bug tracking systems, and software development 

projects. Each dataset includes a set of features, such as lines of 

code, number of developers, and complexity metrics, and a 

target variable, such as the number of defects, the effort 

required, or the quality of the software. In our project we are 

using KC1, KC2, PC1, JM1, and CM1 and those are all software 

defect prediction datasets. 

 KC1: - The KC1 dataset contains data on software 

modules from a large telecommunications system 

developed in C++. The dataset includes 2109 module 

descriptions, and each module has 22 features that 

capture the size, complexity, and object-oriented 

design properties of the module. The target variable is 

whether the module contains faults or not. 

 

 KC2: - The KC2 dataset contains data on software 

modules from a NASA software project. The dataset 

includes 522 module descriptions, and each module 

has 22 features that capture the size, complexity, and 

objectoriented design properties of the module. The 

target variable is whether the module contains faults or 

not. 

 

 PC1:  - The PC1 dataset contains data on software 

modules from a commercial software project 

developed in C#. The dataset includes 1109 module 

descriptions, and each module has 23 features that 

capture the size, complexity, and object-oriented 

design properties of the module. The target variable is 

whether the module contains faults or not. 

 

 JM1: - The JM1 dataset contains data on software 

modules from a software project developed in Java. 

The dataset includes 10885 module descriptions, and 

each module has 21 features that capture the size, 

complexity, and object-oriented design properties of 

the module. The target variable is whether the module 

contains faults or not. 

 

 

 

 CM1: - The CM1 dataset contains data on software 

modules from a NASA software project. The dataset 

includes 498 module descriptions, and each module has 

21 features that capture the size, complexity, and 

objectoriented design properties of the module. The 

target variable is whether the module contains faults or 

not. 

4.4 Data cleaning preprocessing 

In order to prepare data for analysis or machine learning tasks, 

preprocessing is a crucial step. To make raw data more reliable, 

consistent, and compatible with the chosen algorithm, it must be 

transformed and cleaned. Two frequently used statistical 

measures in data preprocessing are mean and median. Here is a 

quick explanation of how to use them: 

Mean: 

The mean is the average of a set of numbers and is calculated by 

summing up all the values and dividing the sum by the total 

number of values. The mean is used to measure the central 

tendency of a dataset. 

In data preprocessing, the mean can be used for various purposes, 

such as: 

 

Handling missing values: You can replace missing values with 

the mean value of the feature. This ensures that missing data 

doesn't significantly impact the overall statistics of the dataset. 

Feature scaling: A common method to normalize features, giving 

them zero mean and unit variance, is to subtract the mean from 

each data point and divide by the standard deviation. 

Median: 

The middle number in a sorted list of numbers is known as the 

median. The median is the average of the two middle values 

when the number of values on the list is even. When there are 

outliers or skewed distributions in a dataset, the median is used 

to describe the typical value. 

In data preprocessing, the median can be used for tasks such as: 

Handling outliers: Outliers can significantly impact the mean, 

making it less representative of the data. In such cases, using the 

median can provide a more robust measure of central tendency. 

Imputing missing values: Instead of using the mean to fill in 

missing values, the median can be used as an alternative central 

tendency index. This method is helpful when the distribution of 

the data is skewed or when the mean may be significantly affected 

by outliers. 

The use of mean and median depends on the characteristics of the 

dataset and the particular specifications of the analysis or model 

training. Both have their applications in various scenarios. 

4.5 Data transformation 

Data transformation is essential for predicting software defects. It 

entails transforming unprocessed data into a form that can be 

used for modeling and analysis. Here are a few typical data 

transformation methods for predicting software defects: 
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Feature Extraction: This technique involves selecting or 

deriving relevant features from the raw data that can capture the 

characteristics of software defects. These features can include 

code complexity metrics, code churn (changes made to the code 

over time), historical defect data, and developer expertise 

metrics. 

Normalization: Scaling numerical features to a standardized 

range, usually between 0 and 1, is the process of normalization. 

It makes sure that the analysis is not dominated by different 

features with different scales. Techniques like min-max scaling 

or z-score normalization can be used for normalization.  

Min-Max scaling: - 

Data transformation methods like normalization and min-max 

scaling are frequently used to scale numerical features to a 

standardized range. It makes sure that various features' values 

fall within a predetermined range, usually between 0 and 1, 

enabling fair comparisons between variables with various 

scales. 

The following is the min-max scaling formula: 

 

In this formula, X_scaled is equal to (X - X_min) / (X_max - 

X_min), where X_scaled denotes the feature's scaled value, 

X represents the feature's initial value, 

X_min is the feature's lowest value across the dataset, 

The feature's maximum value for the dataset is represented by 

X_max. 

 

You must determine the minimum and maximum values for 

each feature in the dataset before applying min-max scaling. The 

feature's original values can then be converted to their 

corresponding scaled values using the formula. 

The scaled values that are produced will be between 0 and 1. 

The scaled value will be 0 if a value is equal to the minimum 

value of the feature. The scaled value will be 1 if a value is equal 

to the maximum value of the feature. Within this range, values 

between the minimum and maximum will be scaled 

proportionally. 

Missing values are frequently present in datasets taken from the 

real world. Using methods like mean imputation (replacing 

missing values with the feature's mean), median imputation, or 

regression imputation (forecasting missing values based on 

other variables), missing values can be imputed. 

 

Dimensionality Reduction: When a dataset has a lot of features, 

it is possible to use dimensionality reduction techniques to cut 

down on the number of variables while still keeping the most 

crucial data. This can be achieved by using methods like 

Principal Component Analysis (PCA) or feature selection 

algorithms (such as Recursive Feature Elimination). 

 

 

Managing Unbalanced Data: Software defect prediction datasets 

frequently experience class imbalance, where the proportion of 

defective instances compared to non-defective instances is 

disproportionately low. To balance the dataset and avoid biased 

predictions, strategies like oversampling the minority class 

(defective instances) or undersampling the majority class (non-

defective instances) can be used. 

 

   4.6 Data visualization: - 

The graphic representation of information and data is known as 

data visualization. In order to help people comprehend and make 

sense of massive amounts of data, data visualization is a 

technique that makes use of a variety of static and interactive 

visuals within a specific context. In order to visualize patterns, 

trends, and correlations that might otherwise go unnoticed, the 

data is frequently presented in a story format. Data visualization 

is frequently employed as a means of commercializing data. To 

analyze vast amounts of data and make data-driven decisions, 

data visualization tools and technologies are crucial in the world 

of big data. Colors and patterns are appealing to human eyes.  

 Red and blue are easily distinguishable, as are square and circle. 

Another form of visual art that captures viewers' attention and 

keeps them focused on the message is data visualization. A 

person can quickly identify trends and outliers when viewing a 

chart. A person can internalize something quickly if they can see 

it. It is narrative with a goal. Numerous methods exist for 

displaying data, including histograms, density plots, correlation 

matrix plots, pie charts, etc. 

 

 

4.6.1 Minority and majority class before SMOTE. 

 

 

 

 

 

 

 

 

 

 

4.6.2 Minority and majority class after SMOTE. 
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4.6.3 Model accuracy  

 

4.6.4 Model Loss 

 

4.7 Algorithms 

 

4.7.1 SSAE(Stack sparse auto-encoders) 

Stacked Sparse Autoencoder Algorithm: 

Input: 

 X:  Features of the input data are represented by a matrix 

with size m x n, where m denotes the sample count and n the 

number of features. 

layer_sizes: The total number of neurons in each layer is 

represented by a list of integers. activation process Utilizing 

an activation function for each layer 

sparsity_constraint: Sparsity regularization parameter. 

learning_rate: Learning rate for optimization. 

num_epochs: Number of training epochs for each layer. 

batch_size: Batch size used during training. 

Output: 

Encoded_features: Extracted and learned features from the 

dataset. 

For each layer in layer_sizes: 

Initialize encoder weights W^l and biases b^l with 

appropriate dimensions. 

Initialize decoder weights W'^l and biases b'^l to match the 

encoder dimensions. 

Training Loop (num_epochs times): 

 

For epoch in 1 to num_epochs: 

Initialize the average sparsity term avg_sparsity[l] as 0. 

 For each batch of size batch_size in the training data: 

 Forward Pass (Encoding): 

 Compute the encoded representations z^l using the encoder: 

  z^l = activation_function(X_batch @ W^l + b^l) 

 

Sparsity Constraint: 

Calculate the average activation for each neuron over the 

batch: 

avg_activation = (1 / batch_size) * sum(z^l) 

Update avg_sparsity[l] as the exponential moving average of 

avg_activation. 

 Reconstruction Loss: 

Compute the reconstruction recon_X by decoding z^l using the 

decoder: 

recon_X = activation_function(z^l @ W'^l + b'^l) 

Calculate the mean squared error (MSE) reconstruction loss: 

 loss = (1 / batch_size) * sum((X_batch - recon_X)^2) 

 

  Backpropagation and Update: 

Calculate the loss gradients with respect to the biases and 

weights of the encoder and decoder. 

By utilizing the gradients and learning rate, update the 

encoder and decoder weights and biases: 

W^l += learning_rate * gradient_W^l 

b^l += learning_rate * gradient_b^l 

W'^l += learning_rate * gradient_W'^l 

b'^l += learning_rate * gradient_b'^l 

Encoding Data: 

Pass the entire dataset X through the trained encoder of the 

current layer to obtain the encoded features encoded_features. 

Output: 

- Encoded_features: The final encoded features obtained after 

passing through all the layers. 

 

4.7.2 SMOTE Algorithm (Synthetic Minority Oversampling 

Technique):Input: 

X: Features of the dataset (matrix of size m x n). 

y: Labels of the dataset (vector of size m). 

k_neighbors: Number of nearest neighbors for synthetic 

sample generation (k_neighbors >= 3). 

sampling_strategy: Desired ratio of the number of synthetic 

samples to the number of original samples. 

 

Output: 

X_resampled: Oversampled features (matrix of size m' x n). 

y_resampled: Oversampled labels (vector of size m'). 
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Steps: 

1. Count the number of instances in each class. 

2. Identify the minority class samples and majority class 

samples. 

3. Calculate the number of synthetic samples to generate per 

minority instance: 

For each minority instance, generate (sampling_strategy - 1) 

synthetic samples. 

4. Initialize empty lists for the synthetic samples and their 

corresponding labels. 

5. For each minority instance at index i: 

   a. Find the k_neighbors nearest neighbors of instance X[i]. 

   b. For each synthetic sample to generate: 

      i. Choose a random neighbor index j from the 

k_neighbors. 

      ii. Calculate the difference vector between X[i] and X[j]: 

diff_vector = X[j] - X[i]. 

      iii. Generate a random number alpha between 0 and 1. 

      iv. Create the synthetic sample: synth_sample = X[i] + 

alpha * diff_vector. 

      v. Add synth_sample to the list of synthetic samples. 

      vi. Add the corresponding label y[i] to the list of labels for 

synthetic samples. 

6. Stack the original minority samples with the generated 

synthetic samples to create X_resampled. 

7. Stack the corresponding minority labels with the labels for 

synthetic samples to create y_resampled. 

8. Return X_resampled and y_resampled. 

 

4.7.3 RF (Random Forest) 

Random Forest Algorithm: 

Input: Training dataset D, num_trees, max_depth, 

num_features_per_tree 

Output:  Random Forest ensemble of decision trees 

 

Procedure: 

- Initialize an empty ensemble forest. 

- For each tree_i in num_trees: 

- Create a bootstrap sample bootstrap_sample from D with 

replacement. 

- Randomly select num_features_per_tree features from the 

available features. 

- Train a decision tree tree on bootstrap_sample with selected 

features and max_depth. 

- Add tree to the forest. 

- Return the forest. 

 

 

 

Prediction using Random Forest: 

Input: Random Forest ensemble forest, sample to predict 

Output: Predicted class label or value 

Procedure: 

For each tree in the forest: 

Traverse the tree by comparing features of the sample with 

internal node features. 

Once a leaf node is reached, return its predicted class label 

(classification) or value (regression). 

Aggregate predictions from all trees (e.g., majority voting for 

classification, averaging for regression) for the final prediction. 

 

Key Equations (Gini Impurity): 

- Gini impurity at node N: 

  Gini(N) = 1 - Σ(p_i^2), where i is the class index, p_i is the 

probability of class i. 

 

- Gini impurity after a split using feature f and threshold t: 

  Gini_split(f, t) = (N_left / N_total) * Gini(left) + (N_right / 

N_total) * Gini(right), 

  where N_left and N_right are the numbers of examples in the 

left and right subsets after the split, 

  and N_total is the total number of examples in the node. 

 

 

 

4.7.4 Gradient Boosting 

Gradient Boosting Algorithm: 

Input: Training dataset D = {(x_i, y_i)}, num_iterations, base 

learner h(x; θ), loss function L(y, F(x)), learning rate η 

Output: Ensemble of weak learners { F_m(x) } 

 

Procedure: 

1. Initialize predictions F_0(x) for all x to a constant value (e.g., 

the mean of target values). 

2. For m in range num_iterations: 

   a. Compute pseudo-residuals r_i^(m) for each example (x_i,   

y_i): 

r_i^(m) = -[∂L(y_i, F_{m-1}(x_i)) / ∂F_{m-1}(x_i)] 

   b. Fit a base learner h(x; θ) to predict r_i^(m) by minimizing 

the loss function: 

θ_m = argmin θ Σ_i L(y_i, F_{m-1}(x_i) + h(x_i; θ)) 

   c. Calculate the step size for the update: 

γ_m = argmin_γ Σ_i L(y_i, F_{m-1}(x_i) + γ * h(x_i; θ_m)) 

   d. Update the ensemble prediction: 

F_m(x) = F_{m-1}(x) + η * γ_m * h(x; θ_m) 

3. Return the ensemble of weak learners { F_m(x) }. 
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Prediction using Gradient Boosting: 

Input: Ensemble of weak learners { F_m }, sample to predict 

x 

Output: Predicted class label or value 

Procedure: 

1. Initialize the final prediction F(x) to 0. 

2. For each F_m in the ensemble: 

   a. Compute the contribution of F_m(x) to the final 

prediction: 

      F(x) += F_m(x) 

3. Return F(x). 

 

 

5. Performance evaluation metrics 

Checking how well a model works is important when we're 

making it. This helps us find the best model that shows our data 

correctly and predicts how it will do in the future. In this research, 

we used something called a "confusion matrix" (you can see it in 

Figure ) to see how well our techniques workedWe looked at 

different ways to see how good the models were, like accuracy, 

precision, recall, F-Measure, and AUC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 list of values of evaluation metrics 

 

 

5.1. Accuracy 

The percentage of correctly predicted samples compared to 

the entire sample is the accuracy of the model. It shows how 

frequently the developed model can be accurate forecast the 

result. 

5.2. Precision 

Precision The ratio of correctly identified true positives is what 

is measured.  

5.3. Recall 

Other names for recall include sensitivity or true-positive rate. 

It is useful to calculate the proportion of true positives to all 

true positives.  

5.4. F- measure 

F-measure Measuring the harmonic mean of evaluation 

metrics for recall and precision is useful. Its value is between 0 

and 1. 

 

5.5. Area under the curve (AUC) 

In a classification problem, the "Area Under the Curve" (AUC) 

is a metric used to assess how well a model can distinguish 

between various classes. It is frequently employed when 

dealing with binary classification problems, which have two 

possible outcomes or classes. 

In simpler terms, the AUC is like a summary of how well your 

model can tell things apart. If the AUC is closer to 1, it means 

your model is good at distinguishing between the classes. If it's 

closer to 0.5, it suggests that your model isn't doing much 

better than random guessing. 

 

6. Discussion on Results  

The primary goal of this study is to evaluate the effectiveness 

of the deep learning model that produced the encoded 

features. when combined with different methods for feature 

selection and feature extraction, as well as methods for 

addressing data imbalance issues, before being tested with 

machine learning algorithms like random forest and gradient 

boosting classifiers to determine their accuracy. 
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Bar_chart Model comparison on different datasets 

 

 

 

Summary of results 

 

 

 

 

 

 

 

 

 

Line chart Model comparison on different datasets 

 

 

Difference in % for both classifiers (RF & GB) 

KC1 4.597701149 

JM1 1.219512195 

KC2 5.555555556 

PC1 2.105263158 

CM1 4.301075269 

Difference in classifiers for each dataset. 

 

7. Conclusion and future work: - 

Researchers are always interested in finding better ways to 

predict defects in software systems accurately and quickly. 

This can help save time and money during software projects. 

The data about software defects is usually complex and 

unbalanced. Even the NASA dataset has this issue, which 

makes it hard to accurately predict defects. To make 

predictions better, a new approach is suggested. This approach 

combines different methods: one for picking out important 

information, another for selecting the right parts of that 

information, and two more for dealing with unbalanced data. 

This improved dataset makes different computer programs 

that predict defects work much better. Among the methods 

tried in this study, using deep learning for extracting the 

features and machine learning classifiers are used for predict 

the defects from the output of the deep learning model gave 

the most accurate results. There's potential for more research 

to create even better methods that predict software defects 

more accurately and with minimum errors. 

Data
set 

Mo
del 

Accur
acy 

Precis
ion  

Rec
all 

F-
meas
ure 

AUC 
-

aver
age 

KC1 
RF 87 0.81 

0.5
8 

0.67 61 

GB 95 0.78 
0.2
6 

0.39 94 

KC2 
RF 90 0.91 

0.5
9 

0.72 80 

GB 98 0.98 
0.7
6 

0.85 98 

PC1 
RF 95 0.98 

0.3
4 

0.5 64 

GB 98 0.88 
0.6
5 

0.75 77 

CM1 
RF 93 93 99 96 64 

GB 98 98 99 99 97 

JM1 
RF 82 0.75 

0.0
7 

0.13 56 

GB 85 0.69 
0.2
1 

0.33 79 
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