© 2023 IJRAR October 2023, Volume 10, Issue 4

IJRAR.ORG

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

E-ISSN: 2348-1269, P-ISSN: 2349-5138

INTERNATIONAL JOURNAL OF RESEARCH AND
ANALYTICAL REVIEWS (IJRAR) | JRAR.ORG
An International Open Access, Peer-reviewed, Refereed Journal

SOFTWARE DEFECT PREDICTION USING
DEEP LEARNING AND MACHINE
LEARNING ALGORITHMS

Mithilesh Janga, Dr. Ch. Satyananda Reddy
Andhra University, Computer Science and Systems Engineering Department, Visakhapatnam District, Andhra
Pradesh

Abstract In order to proactively identify potential problems before they disrupt production systems, software defect prediction is
essential. This abstract offer a thorough examination of a novel method for improving software defect prediction that combines the
advantages of deep learning and machine learning. When they appear in production environments, software flaws can be expensive
and disruptive. This project introduces a hybrid methodology that uses the strength of deep learning and machine learning to reduce
these risks. To be more precise, we use Stack Sparse Autoencoders to extract useful features from the dataset, which are then used as
inputs for classic machine learning algorithms like Gradient Boosting and Random Forest. We conduct numerous experiments to assess
the efficiency of our hybrid strategy. We evaluate the predictive accuracy of the encoded features using datasets from a NASA repository
that contain actual software defect data. The outcomes unmistakably show that our methodology produces better results than more
established methods for defect prediction. Our models consistently achieve higher accuracy and offer useful insights into software defect
identification by utilizing the rich feature representation learned by the deep learning component. Organizations can proactively
identify software defects, priorities their remediation efforts, and improve overall software reliability by integrating deep learning and

machine learning. Additionally, our method offers a useful framework for utilizing artificial intelligence's benefits in software

development workflows.
Keywords: - SSAE, SMOTE, Random Forest, Gradient Boosting

1. Introduction
Making sure the software works well and doesn't cost too much

to maintain is a major concern in today's world of computer
program creation. By concentrating on ‘"software defect
prediction," a method intended to find potential problems in
software systems before they become significant issues, this
study addresses a significant challenge. This study aims to
improve software defect prediction by utilizing a novel strategy
that fuses the benefits of deep learning and machine learning
techniques. This innovative combination of cutting-edge
techniques has the potential to revolutionize defect detection
and advance efficient software development practices.

The Importance of Software Defect Prediction: Consider
software flaws as minor errors or bugs that can cause programs
to behave oddly or perform incorrectly. . Later in the software
development process, finding and fixing these issues can be

time- and money-consuming. Software defect prediction

becomes an essential tool in this situation. It aids in the early
detection of potential issues, such as the discovery of a small dam
crack before it results in a flood. Software can function more
effectively, and we can save a lot of money by identifying and
resolving these problems early on.

Deep learning and machine learning combined: We require clever
tools to assist us in identifying issues as software grows more
complex. These intelligent tools are similar to deep learning and
machine learning. Deep learning is excellent at analyzing large
amounts of data and identifying patterns. Making educated
guesses based on patterns it has previously observed is a skill of
machine learning. We are developing a super-smart system for
foretelling software issues by combining deep learning and
machine learning.

Stack Sparse Autoencoder's (SSAE) Function: The Stack Sparse
Autoencoder (SSAE) is a vital component of our strategy.
Consider searching for the most crucial pieces to a large jigsaw

puzzle in order to solve it. SSAE uses software data in this way.

IJRAR23D1037

International Journal of Research and Analytical Reviews (IJRAR) ‘ 316

© 2023 IJRAR October 2023, Volume 10, Issue 4

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

Similar to how you solve a puzzle by concentrating on the most
crucial pieces first, it takes the most important components and
makes sense of them. It makes a large amount of information
easier to understand and is the most crucial component. It's
similar to tracking down the crucial hints in a mystery. This
assistant is adept at recognizing the complex patterns in the data,
which makes it simpler to understand where issues could
possibly arise. This makes the process much quicker and smarter
and helps us identify potential problem areas.

Making Better Predictions Together: We employ the Random
Forest (RF) and Gradient Boosting (GB) classifiers as two unique
teamwork techniques to further enhance our software problem
predictions. These teamwork techniques resemble the
combining of many different ideas to make better educated
guesses. The RF method creates numerous decision trees and
combines their educated guesses. The GB method builds and
enhances each subsequent poor guess until it produces a strong
guess. Our prediction is even more precise and dependable
thanks to these teamwork techniques.

Preparing by Preprocessing: Real-world data is a little
disorganized, but we have tools to tidy it up before we foresee
issues. To balance the data and make sure we're not
concentrating on just one thing, we use a tool called SMOTE. It's
like making sure a recipe has a balanced mixture of ingredients.
Additionally, we use Min-Max scaling to ensure that all the data
is within the same range, which helps our tools comprehend it
better and enable faster prediction.

In this study, a novel and clever method for forecasting software
issues is presented. The Stack Sparse Autoencoder, RF, and GB
are used for understanding, along with deep learning and
machine learning techniques, as well as smart preprocessing for
data cleaning. By combining all these techniques, we hope to
become adept at identifying issues before they have a significant

impact.

2. Literature review

To increase the quality and dependability of software systems,
researchers have been working on the challenging task of
software defect prediction using machine learning and deep
learning algorithms. These algorithms face several difficulties
even though they have shown promise in the detection and
prediction of defects. Let's look at some of the major issues and
recommendations made by researchers:

2.1.Insufficient or Imbalanced Data:

([1] Wang & Yao, 2013) insufficient or unbalanced data as a
problem. The crucial problem of data imbalance in software
defect prediction is examined in this essay. In software defect
prediction, unbalanced datasets are common because there are
significantly more instances of non-defective code than
defective code. The authors suggest using the Synthetic
Minority Over-sampling Technique (SMOTE) to address this

problem.

Drawbacks: SMOTE has drawbacks even though it is good at
balancing datasets. The introduction of synthetic samples, which
might not accurately reflect the underlying data distribution, is
the main cause for concern. SMOTE's parameters must be
carefully considered because improperly set values can cause
over-generalization or the production of noisy samples. SMOTE
might also not function at its best when dealing with datasets that
have extremely imbalanced data distributions or complex data
distributions.
2.2. Feature Selection and Engineering:
([2] Kakkar & Jain, 2016)In the context of predicting software
defects, this paper offers a thorough review of feature selection
techniques. It divides these methods into filter, wrapper, and
embedded categories and discusses each one's advantages and
disadvantages. [6](Muthukrishnan & Rohini, 2017) The goal of the
study is to help researchers and practitioners choose the best
feature selection methods for their individual defect prediction
tasks.
Drawbacks: Although the review paper provides insightful
analysis of feature selection techniques, it does not offer specific
suggestions for picking the approach that is best suited for a given
dataset or context. Its utility could be increased by providing clear
guidelines for feature selection in software defect prediction.
2.3.Generalization and Overfitting:
([3] Thanapol et al., 2020) The problem of overfitting in software
defect prediction models is discussed in this research paper.
When a model learns noise from training data and struggles to
generalize to new data, it is said to be overfit. The authors present
regularization methods, such as L1 and L2 regularization, to
address this issue. These methods encourage simpler models and
penalize complex ones, increasing the generalizability of the
models beyond the training set.
Drawbacks: Although the paper effectively addresses overfitting,
it does not go into enough detail about the trade-offs related to
determining the degree of regularization. Since it depends on
various elements including the dataset's size, quality, and the
complexity of the underlying data distribution, choosing the right
level of regularization can be difficult.
2.4.Data Imbalance problems will affect the model
performance.”
([4] Song et al., 2019) the prediction of software bugs while
preserving the best model performance. They conducted their
research using the Naive Bayes and Random Forest machine
learning algorithms. They used information from the publically
available PROMISE repository. Their study's findings exposed
the negative effects of data imbalance on model performance,
highlighting the challenges in creating an effective defect

prediction model.

IJRAR23D1037

International Journal of Research and Analytical Reviews (IJRAR) ‘ 317

© 2023 IJRAR October 2023, Volume 10, Issue 4

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

2.5.Metrics: -

([5] Malhotra, 2015) concentrated on defect prediction using
several datasets. Their study brought to light the prevalence of
software defect metrics that are frequently used to evaluate the
efficacy of prediction models. Accuracy, recall, precision, and
AUC measures were a few of the frequently used metrics.
Malhotra also added a "miscellaneous" category for metrics that
were applied less frequently. Additionally, Malhotra's study
evaluated several machine learning models for the task of

software defect prediction.

3. Problem statement: -

Numerous techniques have been used to address the issue of
inconsistent data, which can be broadly categorized as
algorithmic or data-level solutions. Data sampling methods to
measure class distributions, such as under sampling or
oversampling, are included in data-level solutions. This article
examines four oversampling experiences and focuses on the
oversampling procedure.

3.1. Class Imbalance: -

To solve the problem of inconsistent data, many methods have
been adopted, broadly classified as algorithmic or data-level
solutions. Data-level solutions include data sampling
techniques to measure class distributions, such as under
sampling or oversampling. This article focuses on the
oversampling process and discusses four experiences of the

oversampling process.

3.1.1.Existing Oversampling Techniques (Other than
SMOTE):

Borderline-SMOTE:
Summary: An addition to SMOTE called Borderline-SMOTE is

intended to concentrate on the minority class's borderline
instances. Only those instances that are close to the decision
boundary are selected for the generation of synthetic samples.
ADASYN (Adaptive Synthetic Sampling):

An adaptive oversampling method called ADASYN creates
more synthetic samples for challenging-to-classify minority
class instances. The instances that are further away from the
decision boundary are given more weight.

Safe-Level SMOTE:

Safe-Level SMOTE seeks to maintain the "safe" instances—
those that are simple to correctly classify —while balancing the
dataset. It avoids producing synthetic samples for instances
that are safe in favor of concentrating on producing them for

instances that are close to the borderline.

3.1.2. Drawbacks of Existing Oversampling Techniques:
Borderline-SMOTE:
Drawback: Borderline-SMOTE, while effective in generating
synthetic samples for borderline instances, may not perform
optimally when the dataset contains a mix of borderline and safe
instances. It may not adequately handle the imbalanced
distribution within the minority class.

ADASYN:
Drawback: ADASYN's adaptive approach can lead to an increase

in computational complexity. The technique may require
significant computational resources, especially when applied to
large datasets.

Safe-Level SMOTE:

Drawback: Safe-Level SMOTE focuses on preserving safe
instances but may not generate enough synthetic samples for
borderline instances. This approach might not fully address the
class imbalance issue when the dataset contains a substantial

number of borderline cases.

3.1.3.How SMOTE Overcomes the Drawbacks of Existing
Oversampling Techniques:

Handling Various Cases: Standard SMOTE provides a balanced
approach to oversampling by generating synthetic samples for all
minority class instances, regardless of their proximity to the
decision boundary. This makes it suitable for datasets with
varying levels of imbalance and complexity.

Reduced Complexity: Compared to ADASYN, which adapts to
the difficulty of classification, SMOTE typically has lower
computational complexity. It generates synthetic samples
uniformly, making it more computationally efficient for many
practical applications.

Balanced Approach: SMOTE's balanced approach ensures that all
minority class instances receive synthetic samples, including
borderline instances. This helps in addressing class imbalance
comprehensively, even when the dataset contains a mix of safe

and borderline instances.

In summary, while Borderline-SMOTE, ADASYN, and Safe-Level
SMOTE provide specialized approaches for oversampling, they
come with certain drawbacks related to handling complex cases,
computational complexity, and the preservation of specific
instance types. SMOTE, on the other hand, offers a balanced and
versatile oversampling technique that can effectively address

class imbalance in a wide range of scenarios.

IJRAR23D1037

International Journal of Research and Analytical Reviews (IJRAR) ‘ 318

© 2023 IJRAR October 2023, Volume 10, Issue 4

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

3.2. Deep Learning Models

3.2.1 Existing Deep Learning Algorithms:

CNNs (Convolutional Neural Networks): CNNs are specialized
neural networks created for processing grid-like data,
particularly images. To extract hierarchical features, they use
convolutional layers, and they are widely used in computer
vision tasks.

Long Short-Term Memory networks (LSTMs):

LSTMs are a type of recurrent neural network (RNN) designed
for sequential data, such as time series and natural language.

They excel in capturing long-term dependencies.

Deep Neural Networks (DNNs):

DNNs are general-purpose neural networks with multiple
hidden layers, used for various tasks like -classification,

regression, and feature extraction.

3.2.2 Drawbacks of Existing Deep learning Models: -
Convolutional Neural Networks (CNNs):

Drawbacks: CNNs require large amounts of labeled data for
training, and they might overfit when data is limited. They may

not be suitable for non-grid data and sequential data.

Long Short-Term Memory networks (LSTMs):
Drawbacks: Training LSTMs can be computationally expensive
and slow. They suffer from vanishing and exploding gradient

problems and require substantial data for effective training.

Deep Neural Networks (DNNs):
Drawbacks: DNNs need substantial labeled data, and they can

overfit, especially in high-dimensional settings. They may not
handle sequential or grid data as effectively as specialized

models.

3.2.3 How SSAE Overcomes the Drawbacks of Existing Deep
learning models:

Sparse Representation: SSAE encourages sparse feature
representations, capturing essential data characteristics while
discarding noise.

Unsupervised Learning: SSAE can learn from data without
requiring labeled examples, making it suitable for tasks with
limited labeled data.

Data Compression: SSAE naturally compresses data, reducing
storage requirements and enhancing processing speed.
Versatility: SSAE can be applied to various data types,
including sequential, unstructured, and structured data.

In summary, while CNNs, LSTMs, and DNNs excel in specific
domains, SSAE stands out for feature extraction and data
compression, especially in scenarios with limited labeled data,
where sparsity and unsupervised learning are essential. SSAE's

ability to create compact, informative data representations

makes it valuable for reducing dimensionality and improving
data analysis efficiency. The choice of algorithm should consider
the specific task and data characteristics.

3.3. Machine learning classifiers

Machine learning classifiers are algorithms that learn patterns
and relationships in data to make predictions or decisions. Here

are three common classifiers and their advantages:

3.3.1 Existing Machine Learning Classifiers and Their
Advantages

Logistic Regression:

Simplicity and Interpretability: Logistic regression is easy to
understand and interpret, making it a great choice for beginners
and when model interpretability is essential.

Efficiency: It works well with large datasets and training times are

relatively quick.

Linear Separability: Effective when the decision boundary is

approximately linear.
Support Vector Machines (SVM): -
Effective in High-Dimensional Spaces: SVM can handle datasets

with a high number of features and find complex decision

boundaries.

Robust to Outliers: SVM is less sensitive to outliers compared to

some other classifiers.
Naive Bayes: -
Simple and computationally efficient.

Works well with high-dimensional data.

3.3.2 Drawbacks of Existing Machine Learning Classifiers
While existing machine learning classifiers offer advantages, they
also present challenges when applied to software defect

prediction:
Limited Feature Representation:

Some classifiers may struggle to effectively represent complex

software features, leading to reduced prediction accuracy.
Imbalanced Data:

Software defect datasets often have imbalanced classes, making it
difficult for classifiers to learn the minority class adequately.
High Dimensionality:

In software defect prediction, the feature space can be large and
noisy, making it challenging for some classifiers to discern
relevant patterns.

Sensitive to Hyperparameters:

Many classifiers are sensitive to hyperparameters, requiring fine-
tuning for optimal performance, which can be time-consuming

and resource-intensive.

IJRAR23D1037

International Journal of Research and Analytical Reviews (IJRAR) ‘ 319

© 2023 IJRAR October 2023, Volume 10, Issue 4

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

3.3.3 Overcoming Challenges Using Random Forest and
Gradient Boosting Classifiers

To address the challenges posed by existing classifiers in
software defect prediction, leveraging Random Forest and

Gradient Boosting classifiers can be beneficial:

Random Forest:

Random Forest handles high dimensionality well, effectively
dealing with noisy and irrelevant features in software defect
prediction.

Its ensemble nature helps in mitigating overfitting and
improving prediction accuracy, especially with imbalanced
datasets.

Parameter tuning in Random Forest is relatively

straightforward, making it easier to optimize performance.

Gradient Boosting:

Gradient Boosting is resilient to overfitting and performs well
even with complex feature spaces common in software defect
prediction.

It excels in handling imbalanced data by giving more weight to
misclassified samples, thus enhancing prediction of the
minority class.

Through ensemble learning and weak learner integration,
Gradient Boosting can effectively model software defect
patterns and achieve high prediction accuracy.

By leveraging these advanced classifiers, we can enhance
software defect prediction and address the challenges posed by

traditional classifiers.

4. Proposed Model: -

Our proposed model for software defect prediction combines
the power of deep learning and machine learning algorithms.
The primary algorithm we employ is the Stack Sparse
Autoencoder (SSAE) for effective feature extraction and
dimensionality reduction. SSAE helps capture the underlying
structure and patterns in software code, enabling the
identification of potential defects.

We applied two well-known machine learning classifiers,
Random Forest (RF) and Gradient Boosting (GB), to predict
software defects. While GB iteratively develops weak learners
into powerful predictors, RF is an ensemble learning approach
that uses decision trees to make predictions. Our model can
successfully handle complex data and make precise predictions
by incorporating RF and GB.

A.) Insufficient or Imbalanced Data:

To tackle the challenge of data imbalance, we utilize the
Synthetic Minority Over-sampling Technique (SMOTE).
SMOTE generates synthetic instances for the minority class by

interpolating between existing minority class samples. It selects

a minority sample and finds its k-nearest neighbors (usually k=5)
in feature space. Then, it creates new synthetic samples by taking
linear combinations of the selected sample and its neighbors.
SMOTE generates synthetic instances of the minority class,
balancing the dataset and preventing bias towards the majority
class. This technique enhances the model's ability to accurately
detect defects in software systems.

B.) Feature Selection and Engineering:

Furthermore, we employ data preprocessing techniques to
optimize the model's performance. Specifically, we use min-max
scaling to normalize the input features. Min-max scaling
transforms the feature values to a common range, mitigating the
impact of varying scales and improving convergence during
training.

C.) Overfitting: Overfitting occurs when a model learns to
perform very well on the training data, but it does so at the cost
of performing poorly on unseen data. In other words, an overfit
model learns the noise and random fluctuations in the training
data, rather than the true underlying patterns. This often leads to
a model that is overly complex and highly tailored to the training
data, and as a result, it fails to generalize to new data. Overfitting
is a common pitfall in

machine learning, and it can be detrimental to a model's
performance.

D.) Regularization:

Regularization is a method for avoiding overfitting by
introducing a penalty term to the loss function of the model. The
model is encouraged to have smaller parameter values by this
penalty, which deters it from fitting the training data too closely.
G.) Hyperparameter Tuning: Optimize hyperparameters for
each component (SSaE, RF, and GB) to achieve the best

performance.

Through the integration of SSAE for feature extraction, RF and
GB for classification, SMOTE for data imbalance, and min-max
scaling for data preprocessing, our proposed model offers a

comprehensive approach to software defect prediction.

4.1 Architecture: -

e e e R R R R o e e T ey

| h: SAE] SAE il :
| L . |}

: :I'___r_-_-_-i--n‘ :I' r——*-—x}:: I
1 1 1 ! 1l

| @ b .:‘1"’ i Q' 1 iyl |

|- @401 10ig O o B I
1 I‘_L_.L!_L'_, 4 I

B o nt>Tlna el ™
| | e B "o « |) |l

Input Sample »I .._E.*. X - > R ".'_:_lll]_> I

e i]
IR e
. . .
|- @@ OgT"®: O .
\ i

| e I ool |

| R (Rl EEEL 1] I

[=: . il :
| [ESEESESER s } Losounsamaaaaua h

| ll I| Output Layer; |

Llnpul La_\'crk Two SAEs as Hidden Layers I| |

Stacked sparse auto encoder.

IJRAR23D1037

International Journal of Research and Analytical Reviews (IJRAR) ‘ 320

© 2023 IJRAR October 2023, Volume 10, Issue 4

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

A sparse autoencoder is a type of artificial neural network that
learns to encode input data into a compressed representation
and then decode it back to its original form. The sparsity
constraint encourages the autoencoder to use only a small
number of neurons in the hidden layer, resulting in a more
efficient representation.

Here's an example architecture for a stack of sparse

autoencoders:

Input layer: This layer represents the input data to be encoded.
Its size depends on the dimensionality of the input data.

Encoding layers: These layers consist of the hidden layers of the
autoencoder. Each layer takes the output of the previous layer
and applies a non-linear activation function to create a
compressed representation of the input data. The number of
neurons in each encoding layer progressively decreases to create
a bottleneck effect, forcing the autoencoder to capture the most

salient features.

Sparsity constraint: The sparsity constraint is typically enforced
by adding a penalty term to the loss function of the autoencoder.
This penalty encourages the network to have a small number of
active neurons in the hidden layers, promoting sparse
representations.

Decoding layers: These layers mirror the encoding layers but in
reverse order. They take the compressed representation and
reconstruct the original input data by applying another set of
non-linear activation functions.

Output layer: This layer produces the reconstructed output,
which should ideally match the original input.

The stack of sparse autoencoders can be trained layer by layer
in a greedy manner. Each layer is pretrained as an autoencoder
independently, with the previous layers frozen. Once all the

layers are pretrained, the entire stack can be fine-tuned using

4.2 System Architecture

Load dataset

Feature selection

check for records
with any missing
values

No
Replace missing values
with mean
Data preprocessing
Check if data is Balanced
or Imbalanced
No

Balance with SMOTE

Train Test split
Testdata

Model

SSAE ‘L

Training of model

Random Forest

backpropagation.
propagatio Prediction
Gradent Boosting v
System Architecture
4.3 Datasets
— TOTAL NO. OF NO. OF NO.OF NON- | % AGE OF
S.NO NAME FEATURES/TOTAL | DEFECTIVE DEFECTIVE | DEFECTIVE
NO. OF INSTANCES | INSTANCES INSTANCES | INSTANCES
1 Kc1 22/ 2109 178 1931 12.72%
2 Kc2 37/ 1585 16 1569 1.01%
3 PCt 38/ 759 61 698 8.04%
5 cM1 38/344 42 302 12.21%
6 M1 22/ 9593 1759 7834 18.34%
Dataset details
For our project software defect prediction, we taken our datasets
from the NASA repository, The NASA PROMISE Repository is a
public dataset repository that provides a collection of software
IJRAR23D1037 International Journal of Research and Analytical Reviews (IJRAR) | 321

© 2023 IJRAR October 2023, Volume 10, Issue 4

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

engineering datasets for research purposes. The repository was
established in 2006 as part of the NASA Software Engineering
Laboratory’s research activities and contains datasets from

various domains of software engineering.

The datasets are designed to support the development and
evaluation of software engineering techniques, including
software defect prediction, software effort estimation, software
quality assurance, and software maintenance. The PROMISE
repository currently contains over 50 datasets from various
software engineering domains. The datasets are collected from
publicly available sources, such as open-source software
repositories, bug tracking systems, and software development
projects. Each dataset includes a set of features, such as lines of
code, number of developers, and complexity metrics, and a
target variable, such as the number of defects, the effort
required, or the quality of the software. In our project we are
using KC1, KC2, PC1, JM1, and CM1 and those are all software
defect prediction datasets.

e KC1: - The KC1 dataset contains data on software
modules from a large telecommunications system
developed in C++. The dataset includes 2109 module
descriptions, and each module has 22 features that
capture the size, complexity, and object-oriented
design properties of the module. The target variable is

whether the module contains faults or not.

e KC2: - The KC2 dataset contains data on software
modules from a NASA software project. The dataset
includes 522 module descriptions, and each module
has 22 features that capture the size, complexity, and
objectoriented design properties of the module. The
target variable is whether the module contains faults or

not.

e PCI1: - The PC1 dataset contains data on software
modules from a commercial software project
developed in C#. The dataset includes 1109 module
descriptions, and each module has 23 features that
capture the size, complexity, and object-oriented
design properties of the module. The target variable is

whether the module contains faults or not.

e JM1: - The JM1 dataset contains data on software
modules from a software project developed in Java.
The dataset includes 10885 module descriptions, and
each module has 21 features that capture the size,
complexity, and object-oriented design properties of
the module. The target variable is whether the module

contains faults or not.

e CM1: - The CMI1 dataset contains data on software
modules from a NASA software project. The dataset
includes 498 module descriptions, and each module has
21 features that capture the size, complexity, and
objectoriented design properties of the module. The
target variable is whether the module contains faults or
not.

4.4 Data cleaning preprocessing

In order to prepare data for analysis or machine learning tasks,
preprocessing is a crucial step. To make raw data more reliable,
consistent, and compatible with the chosen algorithm, it must be
transformed and cleaned. Two frequently used statistical
measures in data preprocessing are mean and median. Here is a
quick explanation of how to use them:

Mean:

The mean is the average of a set of numbers and is calculated by
summing up all the values and dividing the sum by the total
number of values. The mean is used to measure the central
tendency of a dataset.

In data preprocessing, the mean can be used for various purposes,

such as:

Handling missing values: You can replace missing values with
the mean value of the feature. This ensures that missing data

doesn't significantly impact the overall statistics of the dataset.

Feature scaling: A common method to normalize features, giving
them zero mean and unit variance, is to subtract the mean from
each data point and divide by the standard deviation.

Median:

The middle number in a sorted list of numbers is known as the
median. The median is the average of the two middle values
when the number of values on the list is even. When there are
outliers or skewed distributions in a dataset, the median is used
to describe the typical value.

In data preprocessing, the median can be used for tasks such as:
Handling outliers: Outliers can significantly impact the mean,
making it less representative of the data. In such cases, using the

median can provide a more robust measure of central tendency.

Imputing missing values: Instead of using the mean to fill in
missing values, the median can be used as an alternative central
tendency index. This method is helpful when the distribution of
the data is skewed or when the mean may be significantly affected
by outliers.

The use of mean and median depends on the characteristics of the
dataset and the particular specifications of the analysis or model
training. Both have their applications in various scenarios.

4.5 Data transformation

Data transformation is essential for predicting software defects. It
entails transforming unprocessed data into a form that can be
used for modeling and analysis. Here are a few typical data
transformation methods for predicting software defects:

IJRAR23D1037

International Journal of Research and Analytical Reviews (IJRAR) ‘ 322

© 2023 IJRAR October 2023, Volume 10, Issue 4

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

Feature Extraction: This technique involves selecting or
deriving relevant features from the raw data that can capture the
characteristics of software defects. These features can include
code complexity metrics, code churn (changes made to the code
over time), historical defect data, and developer expertise
metrics.

Normalization: Scaling numerical features to a standardized
range, usually between 0 and 1, is the process of normalization.
It makes sure that the analysis is not dominated by different
features with different scales. Techniques like min-max scaling
or z-score normalization can be used for normalization.
Min-Max scaling: -

Data transformation methods like normalization and min-max
scaling are frequently used to scale numerical features to a
standardized range. It makes sure that various features' values
fall within a predetermined range, usually between 0 and 1,
enabling fair comparisons between variables with various

scales.

The following is the min-max scaling formula:

In this formula, X_scaled is equal to (X - X_min) / (X_max -
X_min), where X_scaled denotes the feature's scaled value,

X represents the feature's initial value,

X_min is the feature's lowest value across the dataset,

The feature's maximum value for the dataset is represented by

X_max.

You must determine the minimum and maximum values for
each feature in the dataset before applying min-max scaling. The
feature's original values can then be converted to their
corresponding scaled values using the formula.

The scaled values that are produced will be between 0 and 1.
The scaled value will be 0 if a value is equal to the minimum
value of the feature. The scaled value will be 1 if a value is equal
to the maximum value of the feature. Within this range, values
between the minimum and maximum will be scaled
proportionally.

Missing values are frequently present in datasets taken from the
real world. Using methods like mean imputation (replacing
missing values with the feature's mean), median imputation, or
regression imputation (forecasting missing values based on

other variables), missing values can be imputed.

Dimensionality Reduction: When a dataset has a lot of features,
it is possible to use dimensionality reduction techniques to cut
down on the number of variables while still keeping the most
crucial data. This can be achieved by using methods like
Principal Component Analysis (PCA) or feature selection
algorithms (such as Recursive Feature Elimination).

Managing Unbalanced Data: Software defect prediction datasets
frequently experience class imbalance, where the proportion of
defective instances compared to non-defective instances is
disproportionately low. To balance the dataset and avoid biased
predictions, strategies like oversampling the minority class
(defective instances) or undersampling the majority class (non-

defective instances) can be used.

4.6 Data visualization: -

The graphic representation of information and data is known as
data visualization. In order to help people comprehend and make
sense of massive amounts of data, data visualization is a
technique that makes use of a variety of static and interactive
visuals within a specific context. In order to visualize patterns,
trends, and correlations that might otherwise go unnoticed, the
data is frequently presented in a story format. Data visualization
is frequently employed as a means of commercializing data. To
analyze vast amounts of data and make data-driven decisions,
data visualization tools and technologies are crucial in the world
of big data. Colors and patterns are appealing to human eyes.
Red and blue are easily distinguishable, as are square and circle.
Another form of visual art that captures viewers' attention and
keeps them focused on the message is data visualization. A
person can quickly identify trends and outliers when viewing a
chart. A person can internalize something quickly if they can see
it. It is narrative with a goal. Numerous methods exist for
displaying data, including histograms, density plots, correlation

matrix plots, pie charts, etc.

4.6.1 Minority and majority class before SMOTE.

Distribution of target variable (defects) before SMOTE

False Tue

4.6.2 Minority and majority class after SMOTE.

Distribution of target variable (defects) after SMOTE

1750

1500

False Tue
defects

IJRAR23D1037

International Journal of Research and Analytical Reviews (IJRAR) | 323

© 2023 IJRAR October 2023, Volume 10, Issue 4 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

4.6.3 Model accuracy For each batch of size batch_size in the training data:
Forward Pass (Encoding):
4.6.4 Model Loss Compute the encoded representations z"l using the encoder:
model loss z" = activation_function(X_batch @ W”1 + b"])
—— Tain
0.016 1 Validation
Sparsity Constraint:
0.014 - Calculate the average activation for each neuron over the
u batch:
2 00121 - .
avg_activation = (1 / batch_size) * sum(z"1)
0.010 Update avg_sparsity[l] as the exponential moving average of
—— avg_activation.
model accuracy
050 . - — Reconstruction Loss:
Compute the reconstruction recon_X by decoding z"l using the
045 decoder:
= recon_X = activation_function(z"l @ W'l + b'Al)
£ 040
i Calculate the mean squared error (MSE) reconstruction loss:
035 loss = (1 / batch_size) * sum((X_batch - recon_X)"2)
0.30 — Tain
Validation Backpropagation and Update:
0 10 20 0 @ 50

Calculate the loss gradients with respect to the biases and
epoch

weights of the encoder and decoder.

By utilizing the gradients and learning rate, update the

4.7 Algorithms . .
encoder and decoder weights and biases:

WA +=learning_rate * gradient W”1
4.7.1 SSAE(Stack sparse auto-encoders)

b”l +=learning_rate * gradient_b"1
Stacked Sparse Autoencoder Algorithm: . .
W'l += learning_rate * gradient_ W'1
Input:

P b'?l += learning_rate * gradient_b'"l
X: Features of the input data are represented by a matrix)

S Encoding Data:
with size m x n, where m denotes the sample count and n the

Pass the entire dataset X through the trained encoder of the
number of features.

. . . current layer to obtain the encoded features encoded_features.
layer_sizes: The total number of neurons in each layer is
represented by a list of integers. activation process Utilizing Output:

an activation function for each layer - Encoded_features: The final encoded features obtained after

sparsity_constraint: Sparsity regularization parameter. passing through all the layers.

learning_rate: Learning rate for optimization.
4.7.2 SMOTE Algorithm (Synthetic Minority Oversampling

num_epochs: Number of training epochs for each layer.
. . . . Technique):Input:
batch_size: Batch size used during training.
X: Features of the dataset (matrix of size m x n).
Output:
y: Labels of the dataset (vector of size m).
Encoded_features: Extracted and learned features from the

dataset.
For each layer in layer_sizes:

Initialize encoder weights W”l and biases b"l with

appropriate dimensions.

Initialize decoder weights W'*l and biases bl to match the

encoder dimensions.

Training Loop (num_epochs times):

For epoch in 1 to num_epochs:

Initialize the average sparsity term avg_sparsity[l] as 0.

k_neighbors: Number of nearest neighbors for synthetic
sample generation (k_neighbors >= 3).
sampling_strategy: Desired ratio of the number of synthetic

samples to the number of original samples.

Output:
X_resampled: Oversampled features (matrix of size m' x n).

y_resampled: Oversampled labels (vector of size m').

IJRAR23D1037

International Journal of Research and Analytical Reviews (IJRAR) ‘ 324

© 2023 IJRAR October 2023, Volume 10, Issue 4

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

Steps:
1. Count the number of instances in each class.

2. Identify the minority class samples and majority class
samples.

3. Calculate the number of synthetic samples to generate per
minority instance:

For each minority instance, generate (sampling_strategy - 1)
synthetic samples.

4. Initialize empty lists for the synthetic samples and their

corresponding labels.

5. For each minority instance at index i:
a. Find the k_neighbors nearest neighbors of instance X[i].
b. For each synthetic sample to generate:

i. Choose a random neighbor index j from the
k_neighbors.

ii. Calculate the difference vector between X[i] and XI[j]:
diff_vector = X[j] - X[i].

iii. Generate a random number alpha between 0 and 1.

iv. Create the synthetic sample: synth_sample = X[i] +
alpha * diff_vector.

v. Add synth_sample to the list of synthetic samples.
vi. Add the corresponding label y[i] to the list of labels for

synthetic samples.

6. Stack the original minority samples with the generated

synthetic samples to create X_resampled.

7. Stack the corresponding minority labels with the labels for

synthetic samples to create y_resampled.

8. Return X_resampled and y_resampled.

4.7.3 RF (Random Forest)

Random Forest Algorithm:

Input: Training dataset D, num_trees, max_depth,

num_features_per_tree

Output: Random Forest ensemble of decision trees

Procedure:
- Initialize an empty ensemble forest.
- For each tree_i in num_trees:

- Create a bootstrap sample bootstrap_sample from D with

replacement.

- Randomly select num_features_per_tree features from the

available features.

- Train a decision tree tree on bootstrap_sample with selected
features and max_depth.

- Add tree to the forest.

- Return the forest.

Prediction using Random Forest:

Input: Random Forest ensemble forest, sample to predict
Output: Predicted class label or value

Procedure:

For each tree in the forest:

Traverse the tree by comparing features of the sample with

internal node features.

Once a leaf node is reached, return its predicted class label

(classification) or value (regression).

Aggregate predictions from all trees (e.g., majority voting for

classification, averaging for regression) for the final prediction.

Key Equations (Gini Impurity):
- Gini impurity at node N:

Gini(N) = 1 - X(p_i"2), where i is the class index, p_i is the
probability of class i.

- Gini impurity after a split using feature f and threshold t:
Gini_split(f, t) = (N_left / N_total) * Gini(left) + (N_right /
N_total) * Gini(right),
where N_left and N_right are the numbers of examples in the
left and right subsets after the split,

and N_total is the total number of examples in the node.

4.7.4 Gradient Boosting

Gradient Boosting Algorithm:
Input: Training dataset D = {(x_i, y_i)}, num_iterations, base
learner h(x; 0), loss function L(y, F(x)), learning rate 1)

Output: Ensemble of weak learners { F_m(x) }

Procedure:

1. Initialize predictions F_0(x) for all x to a constant value (e.g.,

the mean of target values).
2. For m in range num_iterations:
a. Compute pseudo-residuals r_i"(m) for each example (x_i,
y_i):
r_i™m) = -[0L(y_i, F_{m-1}(x_i)) / OF_{m-1}(x_i)]
b. Fit a base learner h(x; 0) to predict r_i"(m) by minimizing
the loss function:
0_m =argmin 0 X_i L(y_i, F_{m-1}(x_i) + h(x_i; 0))
c. Calculate the step size for the update:
y_m=argmin_y X_i L(y_i, F_{m-1}(x_i) + vy * h(x_i; 0_m))
d. Update the ensemble prediction:
F_m(x) =F_{m-1}(x) + n * y_m * h(x; 6_m)

3. Return the ensemble of weak learners { F_m(x) }.

IJRAR23D1037 International Journal of Research and Analytical Reviews (IJRAR) ‘ 325

© 2023 IJRAR October 2023, Volume 10, Issue 4

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

Prediction using Gradient Boosting;:
Input: Ensemble of weak learners { F_m }, sample to predict
e
Output: Predicted class label or value
Procedure:
1. Initialize the final prediction F(x) to 0.
2. For each F_m in the ensemble:

a. Compute the contribution of F_m(x) to the final
prediction:

F(x) +=F_m(x)

3. Return F(x).

5. Performance evaluation metrics

Checking how well a model works is important when we're
making it. This helps us find the best model that shows our data
correctly and predicts how it will do in the future. In this research,
we used something called a "confusion matrix" (you can see it in
Figure) to see how well our techniques workedWe looked at
different ways to see how good the models were, like accuracy,

precision, recall, F-Measure, and AUC.

Predicted
True Positive (TP) False Negative (FN)
E
o]
<
False Positive True Negative (TN)
Values Meaning
True positive (TP) Output predicted by model and output in test data is true
True negative (TN) Qutput predicted by model and output in test data is false
False positive (FP) Qutput predicted by model is true while output in test data is false
False negative (FN) Qutput predicted by model is false while output in test data is true
Table 1 list of values of evaluation metrics
Evaluation metrics Values
Accuracy TN+ TP
TP+ FP + TN + FN
Recall TP
FN + TP
Precision TP
FP + TP
F-measure 2 * Precision*Recall
Precision+Recall

Table 2 List of evaluation metrics

5.1. Accuracy

The percentage of correctly predicted samples compared to
the entire sample is the accuracy of the model. It shows how
frequently the developed model can be accurate forecast the

result.

5.2. Precision
Precision The ratio of correctly identified true positives is what
is measured.

5.3. Recall

Other names for recall include sensitivity or true-positive rate.
It is useful to calculate the proportion of true positives to all
true positives.

5.4. F- measure

F-measure Measuring the harmonic mean of evaluation
metrics for recall and precision is useful. Its value is between 0
and 1.

5.5. Area under the curve (AUC)
In a classification problem, the "Area Under the Curve" (AUC)

is a metric used to assess how well a model can distinguish
between various classes. It is frequently employed when
dealing with binary classification problems, which have two

possible outcomes or classes.

In simpler terms, the AUC is like a summary of how well your
model can tell things apart. If the AUC is closer to 1, it means
your model is good at distinguishing between the classes. If it's
closer to 0.5, it suggests that your model isn't doing much

better than random guessing.

6. Discussion on Results

The primary goal of this study is to evaluate the effectiveness
of the deep learning model that produced the encoded
features. when combined with different methods for feature
selection and feature extraction, as well as methods for
addressing data imbalance issues, before being tested with
machine learning algorithms like random forest and gradient

boosting classifiers to determine their accuracy.

IJRAR23D1037 International Journal of Research and Analytical Reviews (IJRAR) ‘ 326

© 2023 IJRAR October 2023, Volume 10, Issue 4

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

AUC: 0.6494482656582791

precision recall fi-score support
False 0.89 0.99 0.94 1783
True 0.88 0.31 0.45 326
accuracy 9.89 2109
macro avg 0.88 0.65 0.70 2109
weighted avg 0.89 0.89 0.86 2109

Results of Random Forest

AUC: 0.9610568800773494
precision recall fl-score support

False 0.96 0.99 0.97 1783

True 0.93 0.76 0.84 326
accuracy 0.95 2109
macro avg 0.95 0.88 0.91 2109
weighted avg 0.95 0.95 0.95 2109

Results of Gradient boosting classifiers

Bar_chart Model comparison on different datasets

B Gradent Boosir

E AUC
Data | Mo | Accur | Precis | Rec -
set del acy ion all meas aver
ure
age
RF 87 0.81 Oés 0.67 61
KC1 0.2
GB 95 0.78 6 0.39 94
RF 90 0.91 055 0.72 80
KC2 0.7
GB 98 0.98 6 0.85 98
RF 95 0.98 0.3 0.5 64
4
PC1 0.6
GB 98 0.88 5 0.75 77
RF 93 93 99 96 64
cm1
GB 98 98 99 99 97
RF 82 0.75 0&0 0.13 56
JIM1 >
GB 85 0.69 Oi 0.33 79
Difference in % for both classifiers (RF & GB)
KC1 4.597701149
M1 1.219512195
KC2 5.555555556
PC1 2.105263158
cm1 4.301075269

Summary of results

&

Line chart Model comparison on different datasets

Difference in classifiers for each dataset.

Conclusion and future work: -

Researchers are always interested in finding better ways to
predict defects in software systems accurately and quickly.
This can help save time and money during software projects.
The data about software defects is usually complex and
unbalanced. Even the NASA dataset has this issue, which
makes it hard to accurately predict defects. To make
predictions better, a new approach is suggested. This approach
combines different methods: one for picking out important
information, another for selecting the right parts of that
information, and two more for dealing with unbalanced data.
This improved dataset makes different computer programs
that predict defects work much better. Among the methods
tried in this study, using deep learning for extracting the
features and machine learning classifiers are used for predict
the defects from the output of the deep learning model gave
the most accurate results. There's potential for more research
to create even better methods that predict software defects

more accurately and with minimum errors.

IJRAR23D1037 | International Journal of Research and Analytical Reviews (IJRAR) | 327

© 2023 IJRAR October 2023, Volume 10, Issue 4

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

8.

References

[1] Wang, S., & Yao, X. (2013). Using class imbalance learning
for software defect prediction. IEEE Transactions on
Reliability, 62(2).
https://doi.org/10.1109/TR.2013.2259203

[2] Kakkar, M., & Jain, S. (2016). Feature selection in software
defect prediction: A comparative study. Proceedings of the
2016 6th International Conference - Cloud System and Big
Data Engineering, Confluence 2016.
https://doi.org/10.1109/CONFLUENCE.2016.7508200

[3] Thanapol, P., Lavangnananda, K., Bouvry, P., Pinel, F., &
Leprevost, F. (2020). Reducing Overfitting and Improving
Generalization in Training Convolutional Neural Network
(CNN) under Limited Sample Sizes in Image Recognition.
InCIT 2020 - 5th International
https://doi.org/10.1109/InCIT50588.2020.9310787

[4] Song, Q. Guo, Y., & Shepperd, M. (2019). A
Comprehensive Investigation of the Role of Imbalanced
Learning for Software Defect Prediction. IEEE
Transactions on Software Engineering, — 45(12).
https://doi.org/10.1109/TSE.2018.2836442

[5] Malhotra, R. (2015). A systematic review of machine
learning techniques for software fault prediction. Applied
Soft Computing Journal, 27.
https://doi.org/10.1016/j.as0c.2014.11.023

[6] Muthukrishnan, R., & Rohini, R. (2017). LASSO: A feature
selection technique in predictive modeling for machine
learning. 2016 IEEE International Conference on Advances
in Computer Applications, ICACA 2016.
https://doi.org/10.1109/ICACA.2016.7887916

IJRAR23D1037

International Journal of Research and Analytical Reviews (IJRAR) ‘ 328

https://doi.org/10.1109/TR.2013.2259203
https://doi.org/10.1109/CONFLUENCE.2016.7508200
https://doi.org/10.1109/TSE.2018.2836442
https://doi.org/10.1016/j.asoc.2014.11.023
https://doi.org/10.1109/ICACA.2016.7887916

