
© 2023 IJRAR October 2023, Volume 10, Issue 4 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR23D1037 International Journal of Research and Analytical Reviews (IJRAR) 316

SOFTWARE DEFECT PREDICTION USING

DEEP LEARNING AND MACHINE

LEARNING ALGORITHMS

Mithilesh Janga, Dr. Ch. Satyananda Reddy

Andhra University, Computer Science and Systems Engineering Department, Visakhapatnam District, Andhra

Pradesh

Abstract In order to proactively identify potential problems before they disrupt production systems, software defect prediction is

essential. This abstract offer a thorough examination of a novel method for improving software defect prediction that combines the

advantages of deep learning and machine learning. When they appear in production environments, software flaws can be expensive

and disruptive. This project introduces a hybrid methodology that uses the strength of deep learning and machine learning to reduce

these risks. To be more precise, we use Stack Sparse Autoencoders to extract useful features from the dataset, which are then used as

inputs for classic machine learning algorithms like Gradient Boosting and Random Forest. We conduct numerous experiments to assess

the efficiency of our hybrid strategy. We evaluate the predictive accuracy of the encoded features using datasets from a NASA repository

that contain actual software defect data. The outcomes unmistakably show that our methodology produces better results than more

established methods for defect prediction. Our models consistently achieve higher accuracy and offer useful insights into software defect

identification by utilizing the rich feature representation learned by the deep learning component. Organizations can proactively

identify software defects, priorities their remediation efforts, and improve overall software reliability by integrating deep learning and

machine learning. Additionally, our method offers a useful framework for utilizing artificial intelligence's benefits in software

development workflows.

Keywords: - SSAE, SMOTE, Random Forest, Gradient Boosting

1. Introduction

Making sure the software works well and doesn't cost too much

to maintain is a major concern in today's world of computer

program creation. By concentrating on "software defect

prediction," a method intended to find potential problems in

software systems before they become significant issues, this

study addresses a significant challenge. This study aims to

improve software defect prediction by utilizing a novel strategy

that fuses the benefits of deep learning and machine learning

techniques. This innovative combination of cutting-edge

techniques has the potential to revolutionize defect detection

and advance efficient software development practices.

The Importance of Software Defect Prediction: Consider

software flaws as minor errors or bugs that can cause programs

to behave oddly or perform incorrectly. . Later in the software

development process, finding and fixing these issues can be

time- and money-consuming. Software defect prediction

becomes an essential tool in this situation. It aids in the early

detection of potential issues, such as the discovery of a small dam

crack before it results in a flood. Software can function more

effectively, and we can save a lot of money by identifying and

resolving these problems early on.

Deep learning and machine learning combined: We require clever

tools to assist us in identifying issues as software grows more

complex. These intelligent tools are similar to deep learning and

machine learning. Deep learning is excellent at analyzing large

amounts of data and identifying patterns. Making educated

guesses based on patterns it has previously observed is a skill of

machine learning. We are developing a super-smart system for

foretelling software issues by combining deep learning and

machine learning.

Stack Sparse Autoencoder's (SSAE) Function: The Stack Sparse

Autoencoder (SSAE) is a vital component of our strategy.

Consider searching for the most crucial pieces to a large jigsaw

puzzle in order to solve it. SSAE uses software data in this way.

© 2023 IJRAR October 2023, Volume 10, Issue 4 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR23D1037 International Journal of Research and Analytical Reviews (IJRAR) 317

Similar to how you solve a puzzle by concentrating on the most

crucial pieces first, it takes the most important components and

makes sense of them. It makes a large amount of information

easier to understand and is the most crucial component. It's

similar to tracking down the crucial hints in a mystery. This

assistant is adept at recognizing the complex patterns in the data,

which makes it simpler to understand where issues could

possibly arise. This makes the process much quicker and smarter

and helps us identify potential problem areas.

Making Better Predictions Together: We employ the Random

Forest (RF) and Gradient Boosting (GB) classifiers as two unique

teamwork techniques to further enhance our software problem

predictions. These teamwork techniques resemble the

combining of many different ideas to make better educated

guesses. The RF method creates numerous decision trees and

combines their educated guesses. The GB method builds and

enhances each subsequent poor guess until it produces a strong

guess. Our prediction is even more precise and dependable

thanks to these teamwork techniques.

Preparing by Preprocessing: Real-world data is a little

disorganized, but we have tools to tidy it up before we foresee

issues. To balance the data and make sure we're not

concentrating on just one thing, we use a tool called SMOTE. It's

like making sure a recipe has a balanced mixture of ingredients.

Additionally, we use Min-Max scaling to ensure that all the data

is within the same range, which helps our tools comprehend it

better and enable faster prediction.

In this study, a novel and clever method for forecasting software

issues is presented. The Stack Sparse Autoencoder, RF, and GB

are used for understanding, along with deep learning and

machine learning techniques, as well as smart preprocessing for

data cleaning. By combining all these techniques, we hope to

become adept at identifying issues before they have a significant

impact.

2. Literature review

To increase the quality and dependability of software systems,

researchers have been working on the challenging task of

software defect prediction using machine learning and deep

learning algorithms. These algorithms face several difficulties

even though they have shown promise in the detection and

prediction of defects. Let's look at some of the major issues and

recommendations made by researchers:

2.1. Insufficient or Imbalanced Data:

([1] Wang & Yao, 2013) insufficient or unbalanced data as a

problem. The crucial problem of data imbalance in software

defect prediction is examined in this essay. In software defect

prediction, unbalanced datasets are common because there are

significantly more instances of non-defective code than

defective code. The authors suggest using the Synthetic

Minority Over-sampling Technique (SMOTE) to address this

problem.

Drawbacks: SMOTE has drawbacks even though it is good at

balancing datasets. The introduction of synthetic samples, which

might not accurately reflect the underlying data distribution, is

the main cause for concern. SMOTE's parameters must be

carefully considered because improperly set values can cause

over-generalization or the production of noisy samples. SMOTE

might also not function at its best when dealing with datasets that

have extremely imbalanced data distributions or complex data

distributions.

2.2. Feature Selection and Engineering:

([2] Kakkar & Jain, 2016)In the context of predicting software

defects, this paper offers a thorough review of feature selection

techniques. It divides these methods into filter, wrapper, and

embedded categories and discusses each one's advantages and

disadvantages. [6](Muthukrishnan & Rohini, 2017)The goal of the

study is to help researchers and practitioners choose the best

feature selection methods for their individual defect prediction

tasks.

Drawbacks: Although the review paper provides insightful

analysis of feature selection techniques, it does not offer specific

suggestions for picking the approach that is best suited for a given

dataset or context. Its utility could be increased by providing clear

guidelines for feature selection in software defect prediction.

2.3. Generalization and Overfitting:

([3] Thanapol et al., 2020) The problem of overfitting in software

defect prediction models is discussed in this research paper.

When a model learns noise from training data and struggles to

generalize to new data, it is said to be overfit. The authors present

regularization methods, such as L1 and L2 regularization, to

address this issue. These methods encourage simpler models and

penalize complex ones, increasing the generalizability of the

models beyond the training set.

Drawbacks: Although the paper effectively addresses overfitting,

it does not go into enough detail about the trade-offs related to

determining the degree of regularization. Since it depends on

various elements including the dataset's size, quality, and the

complexity of the underlying data distribution, choosing the right

level of regularization can be difficult.

2.4. Data Imbalance problems will affect the model

performance."

([4] Song et al., 2019) the prediction of software bugs while

preserving the best model performance. They conducted their

research using the Naive Bayes and Random Forest machine

learning algorithms. They used information from the publically

available PROMISE repository. Their study's findings exposed

the negative effects of data imbalance on model performance,

highlighting the challenges in creating an effective defect

prediction model.

© 2023 IJRAR October 2023, Volume 10, Issue 4 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR23D1037 International Journal of Research and Analytical Reviews (IJRAR) 318

2.5. Metrics: -

([5] Malhotra, 2015) concentrated on defect prediction using

several datasets. Their study brought to light the prevalence of

software defect metrics that are frequently used to evaluate the

efficacy of prediction models. Accuracy, recall, precision, and

AUC measures were a few of the frequently used metrics.

Malhotra also added a "miscellaneous" category for metrics that

were applied less frequently. Additionally, Malhotra's study

evaluated several machine learning models for the task of

software defect prediction.

3. Problem statement: -

Numerous techniques have been used to address the issue of

inconsistent data, which can be broadly categorized as

algorithmic or data-level solutions. Data sampling methods to

measure class distributions, such as under sampling or

oversampling, are included in data-level solutions. This article

examines four oversampling experiences and focuses on the

oversampling procedure.

3.1. Class Imbalance: -

To solve the problem of inconsistent data, many methods have

been adopted, broadly classified as algorithmic or data-level

solutions. Data-level solutions include data sampling

techniques to measure class distributions, such as under

sampling or oversampling. This article focuses on the

oversampling process and discusses four experiences of the

oversampling process.

3.1.1. Existing Oversampling Techniques (Other than

SMOTE):

Borderline-SMOTE:

Summary: An addition to SMOTE called Borderline-SMOTE is

intended to concentrate on the minority class's borderline

instances. Only those instances that are close to the decision

boundary are selected for the generation of synthetic samples.

ADASYN (Adaptive Synthetic Sampling):

An adaptive oversampling method called ADASYN creates

more synthetic samples for challenging-to-classify minority

class instances. The instances that are further away from the

decision boundary are given more weight.

Safe-Level SMOTE:

Safe-Level SMOTE seeks to maintain the "safe" instances—

those that are simple to correctly classify—while balancing the

dataset. It avoids producing synthetic samples for instances

that are safe in favor of concentrating on producing them for

instances that are close to the borderline.

3.1.2. Drawbacks of Existing Oversampling Techniques:

Borderline-SMOTE:

Drawback: Borderline-SMOTE, while effective in generating

synthetic samples for borderline instances, may not perform

optimally when the dataset contains a mix of borderline and safe

instances. It may not adequately handle the imbalanced

distribution within the minority class.

ADASYN:

Drawback: ADASYN's adaptive approach can lead to an increase

in computational complexity. The technique may require

significant computational resources, especially when applied to

large datasets.

Safe-Level SMOTE:

Drawback: Safe-Level SMOTE focuses on preserving safe

instances but may not generate enough synthetic samples for

borderline instances. This approach might not fully address the

class imbalance issue when the dataset contains a substantial

number of borderline cases.

3.1.3. How SMOTE Overcomes the Drawbacks of Existing

Oversampling Techniques:

Handling Various Cases: Standard SMOTE provides a balanced

approach to oversampling by generating synthetic samples for all

minority class instances, regardless of their proximity to the

decision boundary. This makes it suitable for datasets with

varying levels of imbalance and complexity.

Reduced Complexity: Compared to ADASYN, which adapts to

the difficulty of classification, SMOTE typically has lower

computational complexity. It generates synthetic samples

uniformly, making it more computationally efficient for many

practical applications.

Balanced Approach: SMOTE's balanced approach ensures that all

minority class instances receive synthetic samples, including

borderline instances. This helps in addressing class imbalance

comprehensively, even when the dataset contains a mix of safe

and borderline instances.

In summary, while Borderline-SMOTE, ADASYN, and Safe-Level

SMOTE provide specialized approaches for oversampling, they

come with certain drawbacks related to handling complex cases,

computational complexity, and the preservation of specific

instance types. SMOTE, on the other hand, offers a balanced and

versatile oversampling technique that can effectively address

class imbalance in a wide range of scenarios.

© 2023 IJRAR October 2023, Volume 10, Issue 4 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR23D1037 International Journal of Research and Analytical Reviews (IJRAR) 319

3.2. Deep Learning Models

3.2.1 Existing Deep Learning Algorithms:

CNNs (Convolutional Neural Networks): CNNs are specialized

neural networks created for processing grid-like data,

particularly images. To extract hierarchical features, they use

convolutional layers, and they are widely used in computer

vision tasks.

Long Short-Term Memory networks (LSTMs):

LSTMs are a type of recurrent neural network (RNN) designed

for sequential data, such as time series and natural language.

They excel in capturing long-term dependencies.

Deep Neural Networks (DNNs):

DNNs are general-purpose neural networks with multiple

hidden layers, used for various tasks like classification,

regression, and feature extraction.

3.2.2 Drawbacks of Existing Deep learning Models: -

Convolutional Neural Networks (CNNs):

Drawbacks: CNNs require large amounts of labeled data for

training, and they might overfit when data is limited. They may

not be suitable for non-grid data and sequential data.

Long Short-Term Memory networks (LSTMs):

Drawbacks: Training LSTMs can be computationally expensive

and slow. They suffer from vanishing and exploding gradient

problems and require substantial data for effective training.

Deep Neural Networks (DNNs):

Drawbacks: DNNs need substantial labeled data, and they can

overfit, especially in high-dimensional settings. They may not

handle sequential or grid data as effectively as specialized

models.

3.2.3 How SSAE Overcomes the Drawbacks of Existing Deep

learning models:

Sparse Representation: SSAE encourages sparse feature

representations, capturing essential data characteristics while

discarding noise.

Unsupervised Learning: SSAE can learn from data without

requiring labeled examples, making it suitable for tasks with

limited labeled data.

Data Compression: SSAE naturally compresses data, reducing

storage requirements and enhancing processing speed.

Versatility: SSAE can be applied to various data types,

including sequential, unstructured, and structured data.

In summary, while CNNs, LSTMs, and DNNs excel in specific

domains, SSAE stands out for feature extraction and data

compression, especially in scenarios with limited labeled data,

where sparsity and unsupervised learning are essential. SSAE's

ability to create compact, informative data representations

makes it valuable for reducing dimensionality and improving

data analysis efficiency. The choice of algorithm should consider

the specific task and data characteristics.

3.3. Machine learning classifiers

Machine learning classifiers are algorithms that learn patterns

and relationships in data to make predictions or decisions. Here

are three common classifiers and their advantages:

3.3.1 Existing Machine Learning Classifiers and Their

Advantages

Logistic Regression:

Simplicity and Interpretability: Logistic regression is easy to

understand and interpret, making it a great choice for beginners

and when model interpretability is essential.

Efficiency: It works well with large datasets and training times are

relatively quick.

Linear Separability: Effective when the decision boundary is

approximately linear.

Support Vector Machines (SVM): -

Effective in High-Dimensional Spaces: SVM can handle datasets

with a high number of features and find complex decision

boundaries.

Robust to Outliers: SVM is less sensitive to outliers compared to

some other classifiers.

Naive Bayes: -

Simple and computationally efficient.

Works well with high-dimensional data.

3.3.2 Drawbacks of Existing Machine Learning Classifiers

While existing machine learning classifiers offer advantages, they

also present challenges when applied to software defect

prediction:

Limited Feature Representation:

Some classifiers may struggle to effectively represent complex

software features, leading to reduced prediction accuracy.

Imbalanced Data:

Software defect datasets often have imbalanced classes, making it

difficult for classifiers to learn the minority class adequately.

High Dimensionality:

In software defect prediction, the feature space can be large and

noisy, making it challenging for some classifiers to discern

relevant patterns.

Sensitive to Hyperparameters:

Many classifiers are sensitive to hyperparameters, requiring fine-

tuning for optimal performance, which can be time-consuming

and resource-intensive.

© 2023 IJRAR October 2023, Volume 10, Issue 4 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR23D1037 International Journal of Research and Analytical Reviews (IJRAR) 320

3.3.3 Overcoming Challenges Using Random Forest and

Gradient Boosting Classifiers

To address the challenges posed by existing classifiers in

software defect prediction, leveraging Random Forest and

Gradient Boosting classifiers can be beneficial:

Random Forest:

Random Forest handles high dimensionality well, effectively

dealing with noisy and irrelevant features in software defect

prediction.

Its ensemble nature helps in mitigating overfitting and

improving prediction accuracy, especially with imbalanced

datasets.

Parameter tuning in Random Forest is relatively

straightforward, making it easier to optimize performance.

Gradient Boosting:

Gradient Boosting is resilient to overfitting and performs well

even with complex feature spaces common in software defect

prediction.

It excels in handling imbalanced data by giving more weight to

misclassified samples, thus enhancing prediction of the

minority class.

Through ensemble learning and weak learner integration,

Gradient Boosting can effectively model software defect

patterns and achieve high prediction accuracy.

By leveraging these advanced classifiers, we can enhance

software defect prediction and address the challenges posed by

traditional classifiers.

4. Proposed Model: -

Our proposed model for software defect prediction combines

the power of deep learning and machine learning algorithms.

The primary algorithm we employ is the Stack Sparse

Autoencoder (SSAE) for effective feature extraction and

dimensionality reduction. SSAE helps capture the underlying

structure and patterns in software code, enabling the

identification of potential defects.

We applied two well-known machine learning classifiers,

Random Forest (RF) and Gradient Boosting (GB), to predict

software defects. While GB iteratively develops weak learners

into powerful predictors, RF is an ensemble learning approach

that uses decision trees to make predictions. Our model can

successfully handle complex data and make precise predictions

by incorporating RF and GB.

A.) Insufficient or Imbalanced Data:

To tackle the challenge of data imbalance, we utilize the

Synthetic Minority Over-sampling Technique (SMOTE).

SMOTE generates synthetic instances for the minority class by

interpolating between existing minority class samples. It selects

a minority sample and finds its k-nearest neighbors (usually k=5)

in feature space. Then, it creates new synthetic samples by taking

linear combinations of the selected sample and its neighbors.

 SMOTE generates synthetic instances of the minority class,

balancing the dataset and preventing bias towards the majority

class. This technique enhances the model's ability to accurately

detect defects in software systems.

B.) Feature Selection and Engineering:

Furthermore, we employ data preprocessing techniques to

optimize the model's performance. Specifically, we use min-max

scaling to normalize the input features. Min-max scaling

transforms the feature values to a common range, mitigating the

impact of varying scales and improving convergence during

training.

C.) Overfitting: Overfitting occurs when a model learns to

perform very well on the training data, but it does so at the cost

of performing poorly on unseen data. In other words, an overfit

model learns the noise and random fluctuations in the training

data, rather than the true underlying patterns. This often leads to

a model that is overly complex and highly tailored to the training

data, and as a result, it fails to generalize to new data. Overfitting

is a common pitfall in

machine learning, and it can be detrimental to a model's

performance.

D.) Regularization:

Regularization is a method for avoiding overfitting by

introducing a penalty term to the loss function of the model. The

model is encouraged to have smaller parameter values by this

penalty, which deters it from fitting the training data too closely.

G.) Hyperparameter Tuning: Optimize hyperparameters for

each component (SSaE, RF, and GB) to achieve the best

performance.

Through the integration of SSAE for feature extraction, RF and

GB for classification, SMOTE for data imbalance, and min-max

scaling for data preprocessing, our proposed model offers a

comprehensive approach to software defect prediction.

4.1 Architecture: -

 Stacked sparse auto encoder.

© 2023 IJRAR October 2023, Volume 10, Issue 4 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR23D1037 International Journal of Research and Analytical Reviews (IJRAR) 321

A sparse autoencoder is a type of artificial neural network that

learns to encode input data into a compressed representation

and then decode it back to its original form. The sparsity

constraint encourages the autoencoder to use only a small

number of neurons in the hidden layer, resulting in a more

efficient representation.

Here's an example architecture for a stack of sparse

autoencoders:

Input layer: This layer represents the input data to be encoded.

Its size depends on the dimensionality of the input data.

Encoding layers: These layers consist of the hidden layers of the

autoencoder. Each layer takes the output of the previous layer

and applies a non-linear activation function to create a

compressed representation of the input data. The number of

neurons in each encoding layer progressively decreases to create

a bottleneck effect, forcing the autoencoder to capture the most

salient features.

Sparsity constraint: The sparsity constraint is typically enforced

by adding a penalty term to the loss function of the autoencoder.

This penalty encourages the network to have a small number of

active neurons in the hidden layers, promoting sparse

representations.

Decoding layers: These layers mirror the encoding layers but in

reverse order. They take the compressed representation and

reconstruct the original input data by applying another set of

non-linear activation functions.

Output layer: This layer produces the reconstructed output,

which should ideally match the original input.

The stack of sparse autoencoders can be trained layer by layer

in a greedy manner. Each layer is pretrained as an autoencoder

independently, with the previous layers frozen. Once all the

layers are pretrained, the entire stack can be fine-tuned using

backpropagation.

4.2 System Architecture

System Architecture

4.3 Datasets

 Dataset details

For our project software defect prediction, we taken our datasets

from the NASA repository, The NASA PROMISE Repository is a

public dataset repository that provides a collection of software

© 2023 IJRAR October 2023, Volume 10, Issue 4 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR23D1037 International Journal of Research and Analytical Reviews (IJRAR) 322

engineering datasets for research purposes. The repository was

established in 2006 as part of the NASA Software Engineering

Laboratory’s research activities and contains datasets from

various domains of software engineering.

The datasets are designed to support the development and

evaluation of software engineering techniques, including

software defect prediction, software effort estimation, software

quality assurance, and software maintenance. The PROMISE

repository currently contains over 50 datasets from various

software engineering domains. The datasets are collected from

publicly available sources, such as open-source software

repositories, bug tracking systems, and software development

projects. Each dataset includes a set of features, such as lines of

code, number of developers, and complexity metrics, and a

target variable, such as the number of defects, the effort

required, or the quality of the software. In our project we are

using KC1, KC2, PC1, JM1, and CM1 and those are all software

defect prediction datasets.

 KC1: - The KC1 dataset contains data on software

modules from a large telecommunications system

developed in C++. The dataset includes 2109 module

descriptions, and each module has 22 features that

capture the size, complexity, and object-oriented

design properties of the module. The target variable is

whether the module contains faults or not.

 KC2: - The KC2 dataset contains data on software

modules from a NASA software project. The dataset

includes 522 module descriptions, and each module

has 22 features that capture the size, complexity, and

objectoriented design properties of the module. The

target variable is whether the module contains faults or

not.

 PC1: - The PC1 dataset contains data on software

modules from a commercial software project

developed in C#. The dataset includes 1109 module

descriptions, and each module has 23 features that

capture the size, complexity, and object-oriented

design properties of the module. The target variable is

whether the module contains faults or not.

 JM1: - The JM1 dataset contains data on software

modules from a software project developed in Java.

The dataset includes 10885 module descriptions, and

each module has 21 features that capture the size,

complexity, and object-oriented design properties of

the module. The target variable is whether the module

contains faults or not.

 CM1: - The CM1 dataset contains data on software

modules from a NASA software project. The dataset

includes 498 module descriptions, and each module has

21 features that capture the size, complexity, and

objectoriented design properties of the module. The

target variable is whether the module contains faults or

not.

4.4 Data cleaning preprocessing

In order to prepare data for analysis or machine learning tasks,

preprocessing is a crucial step. To make raw data more reliable,

consistent, and compatible with the chosen algorithm, it must be

transformed and cleaned. Two frequently used statistical

measures in data preprocessing are mean and median. Here is a

quick explanation of how to use them:

Mean:

The mean is the average of a set of numbers and is calculated by

summing up all the values and dividing the sum by the total

number of values. The mean is used to measure the central

tendency of a dataset.

In data preprocessing, the mean can be used for various purposes,

such as:

Handling missing values: You can replace missing values with

the mean value of the feature. This ensures that missing data

doesn't significantly impact the overall statistics of the dataset.

Feature scaling: A common method to normalize features, giving

them zero mean and unit variance, is to subtract the mean from

each data point and divide by the standard deviation.

Median:

The middle number in a sorted list of numbers is known as the

median. The median is the average of the two middle values

when the number of values on the list is even. When there are

outliers or skewed distributions in a dataset, the median is used

to describe the typical value.

In data preprocessing, the median can be used for tasks such as:

Handling outliers: Outliers can significantly impact the mean,

making it less representative of the data. In such cases, using the

median can provide a more robust measure of central tendency.

Imputing missing values: Instead of using the mean to fill in

missing values, the median can be used as an alternative central

tendency index. This method is helpful when the distribution of

the data is skewed or when the mean may be significantly affected

by outliers.

The use of mean and median depends on the characteristics of the

dataset and the particular specifications of the analysis or model

training. Both have their applications in various scenarios.

4.5 Data transformation

Data transformation is essential for predicting software defects. It

entails transforming unprocessed data into a form that can be

used for modeling and analysis. Here are a few typical data

transformation methods for predicting software defects:

© 2023 IJRAR October 2023, Volume 10, Issue 4 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR23D1037 International Journal of Research and Analytical Reviews (IJRAR) 323

Feature Extraction: This technique involves selecting or

deriving relevant features from the raw data that can capture the

characteristics of software defects. These features can include

code complexity metrics, code churn (changes made to the code

over time), historical defect data, and developer expertise

metrics.

Normalization: Scaling numerical features to a standardized

range, usually between 0 and 1, is the process of normalization.

It makes sure that the analysis is not dominated by different

features with different scales. Techniques like min-max scaling

or z-score normalization can be used for normalization.

Min-Max scaling: -

Data transformation methods like normalization and min-max

scaling are frequently used to scale numerical features to a

standardized range. It makes sure that various features' values

fall within a predetermined range, usually between 0 and 1,

enabling fair comparisons between variables with various

scales.

The following is the min-max scaling formula:

In this formula, X_scaled is equal to (X - X_min) / (X_max -

X_min), where X_scaled denotes the feature's scaled value,

X represents the feature's initial value,

X_min is the feature's lowest value across the dataset,

The feature's maximum value for the dataset is represented by

X_max.

You must determine the minimum and maximum values for

each feature in the dataset before applying min-max scaling. The

feature's original values can then be converted to their

corresponding scaled values using the formula.

The scaled values that are produced will be between 0 and 1.

The scaled value will be 0 if a value is equal to the minimum

value of the feature. The scaled value will be 1 if a value is equal

to the maximum value of the feature. Within this range, values

between the minimum and maximum will be scaled

proportionally.

Missing values are frequently present in datasets taken from the

real world. Using methods like mean imputation (replacing

missing values with the feature's mean), median imputation, or

regression imputation (forecasting missing values based on

other variables), missing values can be imputed.

Dimensionality Reduction: When a dataset has a lot of features,

it is possible to use dimensionality reduction techniques to cut

down on the number of variables while still keeping the most

crucial data. This can be achieved by using methods like

Principal Component Analysis (PCA) or feature selection

algorithms (such as Recursive Feature Elimination).

Managing Unbalanced Data: Software defect prediction datasets

frequently experience class imbalance, where the proportion of

defective instances compared to non-defective instances is

disproportionately low. To balance the dataset and avoid biased

predictions, strategies like oversampling the minority class

(defective instances) or undersampling the majority class (non-

defective instances) can be used.

 4.6 Data visualization: -

The graphic representation of information and data is known as

data visualization. In order to help people comprehend and make

sense of massive amounts of data, data visualization is a

technique that makes use of a variety of static and interactive

visuals within a specific context. In order to visualize patterns,

trends, and correlations that might otherwise go unnoticed, the

data is frequently presented in a story format. Data visualization

is frequently employed as a means of commercializing data. To

analyze vast amounts of data and make data-driven decisions,

data visualization tools and technologies are crucial in the world

of big data. Colors and patterns are appealing to human eyes.

 Red and blue are easily distinguishable, as are square and circle.

Another form of visual art that captures viewers' attention and

keeps them focused on the message is data visualization. A

person can quickly identify trends and outliers when viewing a

chart. A person can internalize something quickly if they can see

it. It is narrative with a goal. Numerous methods exist for

displaying data, including histograms, density plots, correlation

matrix plots, pie charts, etc.

4.6.1 Minority and majority class before SMOTE.

4.6.2 Minority and majority class after SMOTE.

© 2023 IJRAR October 2023, Volume 10, Issue 4 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR23D1037 International Journal of Research and Analytical Reviews (IJRAR) 324

4.6.3 Model accuracy

4.6.4 Model Loss

4.7 Algorithms

4.7.1 SSAE(Stack sparse auto-encoders)

Stacked Sparse Autoencoder Algorithm:

Input:

 X: Features of the input data are represented by a matrix

with size m x n, where m denotes the sample count and n the

number of features.

layer_sizes: The total number of neurons in each layer is

represented by a list of integers. activation process Utilizing

an activation function for each layer

sparsity_constraint: Sparsity regularization parameter.

learning_rate: Learning rate for optimization.

num_epochs: Number of training epochs for each layer.

batch_size: Batch size used during training.

Output:

Encoded_features: Extracted and learned features from the

dataset.

For each layer in layer_sizes:

Initialize encoder weights W^l and biases b^l with

appropriate dimensions.

Initialize decoder weights W'^l and biases b'^l to match the

encoder dimensions.

Training Loop (num_epochs times):

For epoch in 1 to num_epochs:

Initialize the average sparsity term avg_sparsity[l] as 0.

 For each batch of size batch_size in the training data:

 Forward Pass (Encoding):

 Compute the encoded representations z^l using the encoder:

 z^l = activation_function(X_batch @ W^l + b^l)

Sparsity Constraint:

Calculate the average activation for each neuron over the

batch:

avg_activation = (1 / batch_size) * sum(z^l)

Update avg_sparsity[l] as the exponential moving average of

avg_activation.

 Reconstruction Loss:

Compute the reconstruction recon_X by decoding z^l using the

decoder:

recon_X = activation_function(z^l @ W'^l + b'^l)

Calculate the mean squared error (MSE) reconstruction loss:

 loss = (1 / batch_size) * sum((X_batch - recon_X)^2)

 Backpropagation and Update:

Calculate the loss gradients with respect to the biases and

weights of the encoder and decoder.

By utilizing the gradients and learning rate, update the

encoder and decoder weights and biases:

W^l += learning_rate * gradient_W^l

b^l += learning_rate * gradient_b^l

W'^l += learning_rate * gradient_W'^l

b'^l += learning_rate * gradient_b'^l

Encoding Data:

Pass the entire dataset X through the trained encoder of the

current layer to obtain the encoded features encoded_features.

Output:

- Encoded_features: The final encoded features obtained after

passing through all the layers.

4.7.2 SMOTE Algorithm (Synthetic Minority Oversampling

Technique):Input:

X: Features of the dataset (matrix of size m x n).

y: Labels of the dataset (vector of size m).

k_neighbors: Number of nearest neighbors for synthetic

sample generation (k_neighbors >= 3).

sampling_strategy: Desired ratio of the number of synthetic

samples to the number of original samples.

Output:

X_resampled: Oversampled features (matrix of size m' x n).

y_resampled: Oversampled labels (vector of size m').

© 2023 IJRAR October 2023, Volume 10, Issue 4 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR23D1037 International Journal of Research and Analytical Reviews (IJRAR) 325

Steps:

1. Count the number of instances in each class.

2. Identify the minority class samples and majority class

samples.

3. Calculate the number of synthetic samples to generate per

minority instance:

For each minority instance, generate (sampling_strategy - 1)

synthetic samples.

4. Initialize empty lists for the synthetic samples and their

corresponding labels.

5. For each minority instance at index i:

 a. Find the k_neighbors nearest neighbors of instance X[i].

 b. For each synthetic sample to generate:

 i. Choose a random neighbor index j from the

k_neighbors.

 ii. Calculate the difference vector between X[i] and X[j]:

diff_vector = X[j] - X[i].

 iii. Generate a random number alpha between 0 and 1.

 iv. Create the synthetic sample: synth_sample = X[i] +

alpha * diff_vector.

 v. Add synth_sample to the list of synthetic samples.

 vi. Add the corresponding label y[i] to the list of labels for

synthetic samples.

6. Stack the original minority samples with the generated

synthetic samples to create X_resampled.

7. Stack the corresponding minority labels with the labels for

synthetic samples to create y_resampled.

8. Return X_resampled and y_resampled.

4.7.3 RF (Random Forest)

Random Forest Algorithm:

Input: Training dataset D, num_trees, max_depth,

num_features_per_tree

Output: Random Forest ensemble of decision trees

Procedure:

- Initialize an empty ensemble forest.

- For each tree_i in num_trees:

- Create a bootstrap sample bootstrap_sample from D with

replacement.

- Randomly select num_features_per_tree features from the

available features.

- Train a decision tree tree on bootstrap_sample with selected

features and max_depth.

- Add tree to the forest.

- Return the forest.

Prediction using Random Forest:

Input: Random Forest ensemble forest, sample to predict

Output: Predicted class label or value

Procedure:

For each tree in the forest:

Traverse the tree by comparing features of the sample with

internal node features.

Once a leaf node is reached, return its predicted class label

(classification) or value (regression).

Aggregate predictions from all trees (e.g., majority voting for

classification, averaging for regression) for the final prediction.

Key Equations (Gini Impurity):

- Gini impurity at node N:

 Gini(N) = 1 - Σ(p_i^2), where i is the class index, p_i is the

probability of class i.

- Gini impurity after a split using feature f and threshold t:

 Gini_split(f, t) = (N_left / N_total) * Gini(left) + (N_right /

N_total) * Gini(right),

 where N_left and N_right are the numbers of examples in the

left and right subsets after the split,

 and N_total is the total number of examples in the node.

4.7.4 Gradient Boosting

Gradient Boosting Algorithm:

Input: Training dataset D = {(x_i, y_i)}, num_iterations, base

learner h(x; θ), loss function L(y, F(x)), learning rate η

Output: Ensemble of weak learners { F_m(x) }

Procedure:

1. Initialize predictions F_0(x) for all x to a constant value (e.g.,

the mean of target values).

2. For m in range num_iterations:

 a. Compute pseudo-residuals r_i^(m) for each example (x_i,

y_i):

r_i^(m) = -[∂L(y_i, F_{m-1}(x_i)) / ∂F_{m-1}(x_i)]

 b. Fit a base learner h(x; θ) to predict r_i^(m) by minimizing

the loss function:

θ_m = argmin θ Σ_i L(y_i, F_{m-1}(x_i) + h(x_i; θ))

 c. Calculate the step size for the update:

γ_m = argmin_γ Σ_i L(y_i, F_{m-1}(x_i) + γ * h(x_i; θ_m))

 d. Update the ensemble prediction:

F_m(x) = F_{m-1}(x) + η * γ_m * h(x; θ_m)

3. Return the ensemble of weak learners { F_m(x) }.

© 2023 IJRAR October 2023, Volume 10, Issue 4 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR23D1037 International Journal of Research and Analytical Reviews (IJRAR) 326

Prediction using Gradient Boosting:

Input: Ensemble of weak learners { F_m }, sample to predict

x

Output: Predicted class label or value

Procedure:

1. Initialize the final prediction F(x) to 0.

2. For each F_m in the ensemble:

 a. Compute the contribution of F_m(x) to the final

prediction:

 F(x) += F_m(x)

3. Return F(x).

5. Performance evaluation metrics

Checking how well a model works is important when we're

making it. This helps us find the best model that shows our data

correctly and predicts how it will do in the future. In this research,

we used something called a "confusion matrix" (you can see it in

Figure) to see how well our techniques workedWe looked at

different ways to see how good the models were, like accuracy,

precision, recall, F-Measure, and AUC.

Table 1 list of values of evaluation metrics

5.1. Accuracy

The percentage of correctly predicted samples compared to

the entire sample is the accuracy of the model. It shows how

frequently the developed model can be accurate forecast the

result.

5.2. Precision

Precision The ratio of correctly identified true positives is what

is measured.

5.3. Recall

Other names for recall include sensitivity or true-positive rate.

It is useful to calculate the proportion of true positives to all

true positives.

5.4. F- measure

F-measure Measuring the harmonic mean of evaluation

metrics for recall and precision is useful. Its value is between 0

and 1.

5.5. Area under the curve (AUC)

In a classification problem, the "Area Under the Curve" (AUC)

is a metric used to assess how well a model can distinguish

between various classes. It is frequently employed when

dealing with binary classification problems, which have two

possible outcomes or classes.

In simpler terms, the AUC is like a summary of how well your

model can tell things apart. If the AUC is closer to 1, it means

your model is good at distinguishing between the classes. If it's

closer to 0.5, it suggests that your model isn't doing much

better than random guessing.

6. Discussion on Results

The primary goal of this study is to evaluate the effectiveness

of the deep learning model that produced the encoded

features. when combined with different methods for feature

selection and feature extraction, as well as methods for

addressing data imbalance issues, before being tested with

machine learning algorithms like random forest and gradient

boosting classifiers to determine their accuracy.

© 2023 IJRAR October 2023, Volume 10, Issue 4 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR23D1037 International Journal of Research and Analytical Reviews (IJRAR) 327

Bar_chart Model comparison on different datasets

Summary of results

Line chart Model comparison on different datasets

Difference in % for both classifiers (RF & GB)

KC1 4.597701149

JM1 1.219512195

KC2 5.555555556

PC1 2.105263158

CM1 4.301075269

Difference in classifiers for each dataset.

7. Conclusion and future work: -

Researchers are always interested in finding better ways to

predict defects in software systems accurately and quickly.

This can help save time and money during software projects.

The data about software defects is usually complex and

unbalanced. Even the NASA dataset has this issue, which

makes it hard to accurately predict defects. To make

predictions better, a new approach is suggested. This approach

combines different methods: one for picking out important

information, another for selecting the right parts of that

information, and two more for dealing with unbalanced data.

This improved dataset makes different computer programs

that predict defects work much better. Among the methods

tried in this study, using deep learning for extracting the

features and machine learning classifiers are used for predict

the defects from the output of the deep learning model gave

the most accurate results. There's potential for more research

to create even better methods that predict software defects

more accurately and with minimum errors.

Data
set

Mo
del

Accur
acy

Precis
ion

Rec
all

F-
meas
ure

AUC
-

aver
age

KC1
RF 87 0.81

0.5
8

0.67 61

GB 95 0.78
0.2
6

0.39 94

KC2
RF 90 0.91

0.5
9

0.72 80

GB 98 0.98
0.7
6

0.85 98

PC1
RF 95 0.98

0.3
4

0.5 64

GB 98 0.88
0.6
5

0.75 77

CM1
RF 93 93 99 96 64

GB 98 98 99 99 97

JM1
RF 82 0.75

0.0
7

0.13 56

GB 85 0.69
0.2
1

0.33 79

© 2023 IJRAR October 2023, Volume 10, Issue 4 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR23D1037 International Journal of Research and Analytical Reviews (IJRAR) 328

8. References

[1] Wang, S., & Yao, X. (2013). Using class imbalance learning

for software defect prediction. IEEE Transactions on

Reliability, 62(2).

https://doi.org/10.1109/TR.2013.2259203

[2] Kakkar, M., & Jain, S. (2016). Feature selection in software

defect prediction: A comparative study. Proceedings of the

2016 6th International Conference - Cloud System and Big

Data Engineering, Confluence 2016.

https://doi.org/10.1109/CONFLUENCE.2016.7508200

[3] Thanapol, P., Lavangnananda, K., Bouvry, P., Pinel, F., &

Leprevost, F. (2020). Reducing Overfitting and Improving

Generalization in Training Convolutional Neural Network

(CNN) under Limited Sample Sizes in Image Recognition.

InCIT 2020 - 5th International

https://doi.org/10.1109/InCIT50588.2020.9310787

[4] Song, Q., Guo, Y., & Shepperd, M. (2019). A

Comprehensive Investigation of the Role of Imbalanced

Learning for Software Defect Prediction. IEEE

Transactions on Software Engineering, 45(12).

https://doi.org/10.1109/TSE.2018.2836442

[5] Malhotra, R. (2015). A systematic review of machine

learning techniques for software fault prediction. Applied

Soft Computing Journal, 27.

https://doi.org/10.1016/j.asoc.2014.11.023

[6] Muthukrishnan, R., & Rohini, R. (2017). LASSO: A feature

selection technique in predictive modeling for machine

learning. 2016 IEEE International Conference on Advances

in Computer Applications, ICACA 2016.

https://doi.org/10.1109/ICACA.2016.7887916

https://doi.org/10.1109/TR.2013.2259203
https://doi.org/10.1109/CONFLUENCE.2016.7508200
https://doi.org/10.1109/TSE.2018.2836442
https://doi.org/10.1016/j.asoc.2014.11.023
https://doi.org/10.1109/ICACA.2016.7887916

