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ABSTRACT - Wavelets are mathematical functions that cut
up data into different frequency components, and then study each
component with a resolution matched to its scale. They have
advantages over traditional Fourier methods in analyzing physical
situations where the signal contains discontinuities and sharp
spikes. Wavelets were developed independently in the fields of
mathematics, data communication, quantum physics, electrical
engineering, and seismic geology. Interchanges between these
fields during the last ten years have led to many new wavelet
applications such as image compression, turbulence, human
vision, radar, and earthquake prediction. This paper introduces
wavelets to the interested technical person outside of the wavelets
are used in image compression. | describe the history of wavelets
beginning with Fourier, compare wavelet transforms with Fourier
transforms, state properties and other special aspects of wavelets,
and finish with some interesting applications such as image
compression.

I. INTRODUCTION
Wavelets are functions which allow data analysis of signals

or images, according to scales or resolutions. The
processing of signals by wavelet algorithms in fact works much
the same way the human eye does; or the way a digital camera
processes visual scales of resolutions, and intermediate details.
But the same principle also captures cell phone signals, and
even digitized color images used in medicine. Wavelets are of
real use in these areas, for example in approximating data with
sharp discontinuities such as choppy signals, or pictures with
lots of edges. While wavelets is perhaps a chapter in function
theory, we show that the algorithms that result are key to the
processing of numbers, or more precisely of digitized
information, signals, time series, still-images, movies, color
images, etc.
Thus, applications of the wavelet idea include big parts of
signal and image processing, data compression, fingerprint
encoding, and many other fields of science and engineering.
This paper focuses on the processing of color images with the
use of custom designed wavelet algorithms, and mathematical
threshold filters. Although there have been a number of recent
papers on the operator theory of wavelets, there is a need for a
tutorial which explains some applied tends from scratch to
operator theorists.

1. OVERVIEW

A. FOURIER ANALYSIS

Fourier's representation of functions as a superposition of sine’s
and cosines has become ubiquitous He asserted that any 2 =«
periodic function f(x) is the sum

(x) = op + Z_»:=: ILG” cos “.._ + b, s’.:‘l?:':: ]

1.2)

of its Fourier series. The coefficients ao, a, and b, are calculated
by
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both the analytic and numerical solution of differential
equations and for the analysis and treatment of communication
signals. Fourier and wavelet analysis have some very strong
links.

The Fourier transform's utility lies in its ability to analyze a
signal in the time domain for its frequency content. The
transform works by first translating a function in the time
domain into a function in the frequency domain. The signal can
then be analyzed for its frequency content because the Fourier
coefficients of the transformed function represent the
contribution of each sine and cosine function at each frequency.
An inverse Fourier transform does just what you'd expected
transform data from the frequency domain into the time
domain.

B. WINDOW FOURIER TRANSFORMS

If f(t) is a nonperiodic signal, the summation of the periodic
functions, sine and cosine, does not accurately represent the
signal. You could artificially extend the signal to make it
periodic but it would require additional continuity at the
endpoints. The windowed Fourier transform (WFT) is one
solution to the problem of better representing the nonperiodic
signal. With the WFT, the input signal f(t) is chopped up into
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sections, and each section is analyzed for its frequency content
separately. If the signal has sharp transitions we window the
input data so that the sections converge to zero at the endpoints.
This windowing is accomplished via a weight function that
places less emphasis near the interval's endpoints than in the
middle. The effect of the window is to localize the signal in
time.

C. FAST FOURIER TRANSFORMS

To approximate a function by samples, and to approximate the
Fourier integral by the discrete Fourier transform, requires
applying a matrix whose order is the number sample points n:
Since multiplying an n X n matrix by a vector costs on the
order of n? arithmetic operations, the problem gets quickly
worse as the number of sample points increases. However, if
the samples are uniformly spaced, then the Fourier matrix can
be factored into a product of just a few sparse matrices, and the
resulting factors can be applied to a vector in a total of order n
log. n arithmetic operations. This is the so-called fast Fourier
transform or FFT.

D. WAVELET TRANSFORMS VERSUS FOURIER
TRANSFORMS

The fast Fourier transform (FFT) and the discrete wavelet
transform (DWT) are both linear operations

that generate a data structure that contains log2 n segments of
various lengths, usually filling and transforming it into a
different data vector of length 2n. The mathematical properties
of the matrices involved in the transforms are similar as well.
The inverse transform matrix for both the FFT and the DWT is
the transpose of the original. As a result, both transforms can be
viewed as a rotation in function space to a different domain.
For the FFT, this new domain contains basis functions that are
sines and cosines. For the wavelet transform, this new domain
contains more complicated basis functions called wavelets,
mother wavelets, or analyzing wavelets.

E. DISSIMILARITIES BETWEEN FOURIER AND
WAVELET TRANSFORMS

The most interesting dissimilarity between these two kinds of
transforms is that individual wavelet functions are localized in
space. Fourier sine and cosine functions are not. This
localization feature, along with wavelets' localization of
frequency, makes many functions and operators using wavelets
sparse, when transformed into the wavelet domain. This
sparseness, in turn, results in a number of useful applications
such as data compression, detecting features in images, and
removing noise from time series.

Because a single window is used for all frequencies in the
WEFT, the resolution of the analysis is the same at all locations
in the time-frequency plane. An advantage of wavelet
transforms is that the windows vary. This happy medium is
exactly what you get with wavelet One thing to remember is
that wavelet transforms do not have a single set of basis
functions like the Fourier transform. Instead, wavelet
transforms have an infinite set of possible basis functions. Thus

wavelet analysis provides immediate access to information that
can be obscured by other time-frequency methods such as
Fourier analysis.

1l WHAT DO SOME WAVELETS LOOK LIKE?
Wavelet transforms comprise an infinite set. The different
wavelet families make different trade of between how
compactly the basis functions are localized in space and how
smooth they are.

Some of the wavelet bases have fractal structure. The
Daubechies wavelet family is one example (see Figure 1).
Within each family of wavelets (such as the Daubechies
family) are wavelet subclasses distinguished by the
number of coefficients and by the level of iteration.(see
figure 2)
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Fig. 1. The fractal self-similiarity of the Daubechies mother wavelet.
This figure was generated using the Matlab.
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Fig. 2. Several different families of wavelets. The number next to the wavelet
name represents the number of vanishing moments (A stringent mathematical
definition related to the number of wavelet coefficients) for the subclass of
wavelet. These figures were generated using Matlab.
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Relationship for the coefficients that must be satisfied, and is
directly related to the number of coefficient.

IV. Wavelet Color Image Compression

A. Methods- The whole process of wavelet image compression
is performed as follows: An input image is taken by the
computer, forward wavelet transform is performed on the
digital image, thresholding is one on the digital image, entropy
coding is done on the image where necessary, thus the
compression of image is done on the computer. Then with the
compressed image, reconstruction of wavelet transformed
image is done, then inverse wavelet transform is performed on
the image, thus image is reconstructed.

B. Forward Wavelet Transform- Various wavelet transforms
are used in this step. Namely Daubechies wavelets, Coiflets,
biorthogonal wavelets, and Symlets. These various transforms
are implemented to observe how various mathematical
properties such as symmetry, number of vanishing moments
and orthogonality differ the result of compressed image.
Advantages short support is that it preserves locality. The
Daubechies wavelets used are orthogonal, so do Coiflets.
Symlets have the property of being close to symmetric. The
biorthogonal wavelets are not orthogonal but not having to be
orthogonal gives more options to a variety of filters such as
symmetric filters thus allowing them to possess the symmetric

property.

C. Wavelets- Compactly supported wavelets are functions
defined over a finite interval and having an average value of
zero. The basic idea of the wavelet transform is to represent any
arbitrary function f(x) as a superposition of a set of such
wavelets or basis functions. These basis functions are obtained
from a single prototype wavelet called the mother wavelet y(x),
by dilations or scaling and translations. Wavelet bases are very
good at efficiently representing functions that are smooth

f(x) ZE?: £z qgl:—n:l:.;g(r —m) (4.3)
E. Thresholding- Since the whole purpose of this project was to
compare the performance of each image compression using
different wavelets, fixed thresholds were used. Soft threshold
was used in this project in the hope that the drastic differences
in gradient in the image would be noted less apparently. The
soft and hard thresholding Tsoft, Thard are defined as follows:

0 if v =4

Tsoft(x)=| x—4 if x = A (4.4)
x+ A ifx = =4

Thard(x) :{: ? ‘;J)j ! . (4.5)

It could be observed by looking at the definitions, the

difference between them is related to how the coefficients
larger than a threshold value A in absolute values are handled.
In hard thresholding, these coefficient values are left alone.
Unlike in hard thresholding, the coefficient values area
decreased by

) if positive and increased by A if negative [Waln02].

However, a fixed threshold values were used so as to have the
same given condition for every wavelet transform to compare
the performances of different conditions. Here, fixed thresholds
10 and 20 were used. For the lossless compression O is used as
the threshold for an obvious reason.

v. LOSSLESS COMPRESSION
It not always important for digitised photo's to be stored
exactly. There is already natural noise in the picture. Storing
this noise is a waste of space, and adding some extra noise
would not really harm anyone. It seems that lossy compression
is much

exceptfora | Level Paint Kermit Child
Zr_nall ts:et _(t)_f 0 100% 100% 100%
eSCOI’I nuiti 1 89% 80% 85%
For each n, k 2 83% 70% %
£ Z, define 3 80% 65% 72%
k) by |4 79% 63% 69%
5 78% 62% 68%
6 78% 62% 68%
ynk(x) =
2M2y(2"x — k) (4.1)

Constructing the function wy(x), L?> on R, such that
{yn,k(X)}nkez is an orthonormal basis on R. As mentioned
before y(x) is a wavelet and the collection
{ynk(X)}nksz is a wavelet orthonormal basis on R; this
framework for constructing wavelets involves the concept of a
multiresolution analysis or MRA.

D. Multiresolution Analysis- Multiresolution analysis is a
device for computation of basis coefficients in L?(R) : f
=>">"¢n,kyin, k. It is defined as follows, see [Kei04]: Define
Vn = {f(x)[f(x) = 2"2g(2"x), g(x) € V0}, (4.2)
where

more relevant than lossless compression for photo's.

Lossy compression that is not flexible is worthless. To have this
freedom, the user must also have the option of lossless
compression. It is one of the options you will enjoy having
even if you do not use it.

The second point of this section is to show that natural images
have redundancy, and that the working of lossy compression is
not solely based on throwing things away. The results in this
section are the real baseline for the evaluation of the lossy
compression schemes, instead of the original file size.

I have investigated the use of the PLUS wavelet for lossless
compression. For several monochrome images | calculated the

IJRAR23D1551 ’ International Journal of Research and Analytical Reviews (IJRAR) ‘ 382



© 2023 IJRAR October 2023, Volume 10, Issue 4

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

entropy after applying the PLUS wavelet transform 0,1,2,3,4,5
and 6 times.

One sees that the compression achieved varies from image to
image, but that compression is achieved in

all cases.

Figure 4 Wavelet Decomposition of an Image Component. The
image has been modified: the average detail has been lightened and
the horizontal, vertical and diagonal details are shown as negative
images with a reversal of white and black, because of contraints of
the printing process.

Doing more than 5 or 6 levels is not useful, because the data
resulting from 6 transforms consists mostly of detail
coefficients, not of smooth coefficients. Another transform
would only work on these smooth coefficients, so overall it
cannot make much difference. The percents given above are not
unbeatable. For the calculation of the entropy the formula of the
data compression is used. This formula treats the data as a
large, unordered bag of samples. The probability estimates can
also be based on the already sent neighbours. This is more

complicated, but can yield better compression. Said and
Pearlman do so in their paper [9]. | did not do this because
things would get quite complicated.

According to David Salomon[14], the art of data compression
is not to squeeze every bit out of everything, but to find a
balance between programming complexity and compression
ratio.

V. CONCLUSION

Wavelet Image Processing enables computers to store an image
in many scales of resolutions, thus decomposing an image into
various levels and types of details and approximation with
different-valued resolutions. Wavelets allow one to compress
the image using less storage space with more details of the
image. The advantage of decomposing images to approximate
and detail parts is that it enables to isolate and manipulate the
data with specific properties. With this, it is possible to
determine whether to preserve more specific details. For
instance, keeping more vertical detail instead of keeping all the
horizontal, diagonal and vertical details of an image that has
more vertical aspects. This would allow the image to lose a
certain amount of horizontal and diagonal details, but would
not affect the image in human perception.
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