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        ABSTRACT - Wavelets are mathematical functions that cut 

up data into different frequency components, and then study each 

component with a resolution matched to its scale. They have 

advantages over traditional Fourier methods in analyzing physical 

situations where the signal contains discontinuities and sharp 

spikes. Wavelets were developed independently in the fields of 

mathematics, data communication, quantum physics, electrical 

engineering, and seismic geology. Interchanges between these 

fields during the last ten years have led to many new wavelet 

applications such as image compression, turbulence, human 

vision, radar, and earthquake prediction. This paper introduces 

wavelets to the interested technical person outside of the wavelets 

are used in image compression. I describe the history of wavelets 

beginning with Fourier, compare wavelet transforms with Fourier 

transforms, state properties and other special aspects of wavelets, 

and finish with some interesting applications such as image 

compression.  

 

I. INTRODUCTION 

avelets are functions which allow data analysis of signals 

or images, according to scales or resolutions. The 

processing of signals by wavelet algorithms in fact works much 

the same way the human eye does; or the way a digital camera 

processes visual scales of resolutions, and intermediate details. 

But the same principle also captures cell phone signals, and 

even digitized color images used in medicine. Wavelets are of 

real use in these areas, for example in approximating data with 

sharp discontinuities such as choppy signals, or pictures with 

lots of edges. While wavelets is perhaps a chapter in function 

theory, we show that the algorithms that result are key to the 

processing of numbers, or more precisely of digitized 

information, signals, time series, still-images, movies, color 

images, etc. 

Thus, applications of the wavelet idea include big parts of 

signal and image processing, data compression, fingerprint 

encoding, and many other fields of science and engineering. 

This paper focuses on the processing of color images with the 

use of custom designed wavelet algorithms, and mathematical 

threshold filters. Although there have been a number of recent 

papers on the operator theory of wavelets, there is a need for a 

tutorial which explains some applied tends from scratch to 

operator theorists.  

 
 

II. OVERVIEW 

A. FOURIER ANALYSIS 

Fourier's representation of functions as a superposition of sine’s 

and cosines has become ubiquitous He asserted that any 2 π 

periodic function f(x) is the sum 

 

                                                                                                                                                                                                                                              

(1.1)                               

of its Fourier series. The coefficients a0, an and bn are calculated 

by 

  

              

     

 

both the analytic and numerical solution of differential 

equations and for the analysis and treatment of communication 

signals. Fourier and wavelet analysis have some very strong 

links. 

The Fourier transform's utility lies in its ability to analyze a 

signal in the time domain for its frequency content. The 

transform works by first translating a function in the time 

domain into a function in the frequency domain. The signal can 

then be analyzed for its frequency content because the Fourier 

coefficients of the transformed function represent the 

contribution of each sine and cosine function at each frequency. 

An inverse Fourier transform does just what you'd expected 

transform data from the frequency domain into the time 

domain. 

 

 

B. WINDOW FOURIER TRANSFORMS 

If f(t) is a nonperiodic signal, the summation of the periodic 

functions, sine and cosine, does not accurately represent the 

signal. You could artificially extend the signal to make it 

periodic but it would require additional continuity at the 

endpoints. The windowed Fourier transform (WFT) is one 

solution to the problem of better representing the nonperiodic 

signal. With the WFT, the input signal f(t) is chopped up into 

W 
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sections, and each section is analyzed for its frequency content 

separately. If the signal has sharp transitions we window the 

input data so that the sections converge to zero at the endpoints. 

This windowing is accomplished via a weight function that 

places less emphasis near the interval's endpoints than in the 

middle. The effect of the window is to localize the signal in 

time. 

 

C. FAST FOURIER TRANSFORMS 

To approximate a function by samples, and to approximate the 

Fourier integral by the discrete Fourier transform, requires 

applying a matrix whose order is the number sample points n: 

Since multiplying an n X n matrix by a vector costs on the 

order of n2 arithmetic operations, the problem gets quickly 

worse as the number of sample points increases. However, if 

the samples are uniformly spaced, then the Fourier matrix can 

be factored into a product of just a few sparse matrices, and the 

resulting factors can be applied to a vector in a total of order n 

log2 n arithmetic operations. This is the so-called fast Fourier 

transform or FFT. 

 

D. WAVELET TRANSFORMS VERSUS FOURIER 

TRANSFORMS 

The fast Fourier transform (FFT) and the discrete wavelet 

transform (DWT) are both linear operations 

that generate a data structure that contains log2 n segments of 

various lengths, usually filling and transforming it into a 

different data vector of length 2n. The mathematical properties 

of the matrices involved in the transforms are similar as well. 

The inverse transform matrix for both the FFT and the DWT is 

the transpose of the original. As a result, both transforms can be 

viewed as a rotation in function space to a different domain. 

For the FFT, this new domain contains basis functions that are 

sines and cosines. For the wavelet transform, this new domain 

contains more complicated basis functions called wavelets, 

mother wavelets, or analyzing wavelets. 

E. DISSIMILARITIES BETWEEN FOURIER AND 

WAVELET TRANSFORMS 

 

The most interesting dissimilarity between these two kinds of 

transforms is that individual wavelet functions are localized in 

space. Fourier sine and cosine functions are not. This 

localization feature, along with wavelets' localization of 

frequency, makes many functions and operators using wavelets 

sparse, when transformed into the wavelet domain. This 

sparseness, in turn, results in a number of useful applications 

such as data compression, detecting features in images, and 

removing noise from time series. 

Because a single window is used for all frequencies in the 

WFT, the resolution of the analysis is the same at all locations 

in the time-frequency plane. An advantage of wavelet 

transforms is that the windows vary.  This happy medium is 

exactly what you get with wavelet One thing to remember is 

that wavelet transforms do not have a single set of basis 

functions like the Fourier transform. Instead, wavelet 

transforms have an infinite set of possible basis functions. Thus 

wavelet analysis provides immediate access to information that 

can be obscured by other time-frequency methods such as 

Fourier analysis. 

 

III. WHAT DO SOME WAVELETS LOOK LIKE? 

Wavelet transforms comprise an infinite set. The different 

wavelet families make different trade of between how 

compactly the basis functions are localized in space and how 

smooth they are. 

Some of the wavelet bases have fractal structure. The 

Daubechies wavelet family is one example (see Figure 1). 

Within each family of wavelets (such as the Daubechies 

family) are wavelet subclasses distinguished by the 

number of coefficients and by the level of iteration.(see 

figure 2)  

 

 

Fig. 1. The fractal self-similiarity of the Daubechies mother wavelet. 

This figure was generated using the Matlab. 

 

Fig. 2. Several different families of wavelets. The number next to the wavelet 

name represents the number of vanishing moments (A stringent mathematical 

definition related to the number of wavelet coefficients) for the subclass of 

wavelet. These figures were generated using Matlab. 
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Relationship for the coefficients that must be satisfied, and is 

directly related to the number of coefficient.  

 

IV.   Wavelet Color Image Compression 

A. Methods- The whole process of wavelet image compression 

is performed as follows: An input image is taken by the 

computer, forward wavelet transform is performed on the 

digital image, thresholding is one on the digital image, entropy 

coding is done on the image where necessary, thus the 

compression of image is done on the computer. Then with the 

compressed image, reconstruction of wavelet transformed 

image is done, then inverse wavelet transform is performed on 

the image, thus image is reconstructed.  

 

B. Forward Wavelet Transform- Various wavelet transforms 

are used in this step. Namely Daubechies wavelets, Coiflets, 

biorthogonal wavelets, and Symlets. These various transforms 

are implemented to observe how various mathematical 

properties such as symmetry, number of vanishing moments 

and orthogonality differ the result of compressed image. 

Advantages short support is that it preserves locality. The 

Daubechies wavelets used are orthogonal, so do Coiflets. 

Symlets have the property of being close to symmetric. The 

biorthogonal wavelets are not orthogonal but not having to be 

orthogonal gives more options to a variety of filters such as 

symmetric filters thus allowing them to possess the symmetric 

property.  

 

C. Wavelets- Compactly supported wavelets are functions 

defined over a finite interval and having an average value of 

zero. The basic idea of the wavelet transform is to represent any 

arbitrary function f(x) as a superposition of a set of such 

wavelets or basis functions. These basis functions are obtained 

from a single prototype wavelet called the mother wavelet ψ(x), 

by dilations or scaling and translations. Wavelet bases are very 

good at efficiently representing functions that are smooth 

except for a  

small set of 

discontinuiti

es. 

For each n, k 

 Z, define 

ψn,k(x) by 

 

              

ψn,k(x) = 

2n/2ψ(2nx − k)                          (4.1) 

 

         Constructing the function ψ(x), L2 on R, such that 

{ψn,k(x)}n,k Z is an orthonormal basis on R. As mentioned 

before ψ(x) is a wavelet and the collection 

{ψn,k(x)}n,k Z is a wavelet orthonormal basis on R; this 

framework for constructing wavelets involves the concept of a 

multiresolution analysis or MRA. 

 

D. Multiresolution Analysis- Multiresolution analysis is a 

device for computation of basis coefficients in L2(R) : f 

=∑∑cn,kψn,k. It is defined as follows, see [Kei04]: Define 

          Vn = {f(x)|f(x) = 2n/2g(2nx), g(x)  V0},  (4.2) 

    where 

            f(x) =                   (4.3) 

E. Thresholding- Since the whole purpose of this project was to 

compare the performance of each image compression using 

different wavelets, fixed thresholds were used. Soft threshold 

was used in this project in the hope that the drastic differences 

in gradient in the image would be noted less apparently. The 

soft and hard thresholding Tsoft, Thard are defined as follows: 

 

Tsoft(x) =                  (4.4)  

 

 

Thard(x) =                            (4.5) 

It could be observed by looking at the definitions, the 

difference between them is related to how the coefficients 

larger than a threshold value λ in absolute values are handled. 

In hard thresholding, these coefficient values are left alone. 

Unlike in hard thresholding, the coefficient values area 

decreased by 

λ if positive and increased by λ if negative [Waln02]. 

However, a fixed threshold values were used so as to have the 

same given condition for every wavelet transform to compare 

the performances of different conditions. Here, fixed thresholds 

10 and 20 were used. For the lossless compression 0 is used as 

the threshold for an obvious reason. 

 

IV. LOSSLESS COMPRESSION 

It not always important for digitised photo's to be stored 

exactly. There is already natural noise in the picture. Storing 

this noise is a waste of space, and adding some extra noise 

would not really harm anyone. It seems that lossy compression 

is much  

 

 

 

 

 

 

 

 

 

 

more relevant than lossless compression for photo's. 

Lossy compression that is not flexible is worthless. To have this 

freedom, the user must also have the option of lossless 

compression. It is one of the options you will enjoy having 

even if you do not use it. 

The second point of this section is to show that natural images 

have redundancy, and that the working of lossy compression is 

not solely based on throwing things away.  The results in this 

section are the real baseline for the evaluation of the lossy 

compression schemes, instead of the original file size. 

I have investigated the use of the PLUS wavelet for lossless 

compression. For several monochrome images I calculated the 
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entropy after applying the PLUS wavelet transform 0,1,2,3,4,5 

and 6 times.  

One sees that the compression achieved varies from image to 

image, but that compression is achieved in  

all cases. 

 

 

 
                          Figure 1. Original Image 

 

 

 
 
Figure 4  Wavelet Decomposition of an Image Component. The 

image has been modified: the average detail has been lightened and 
the horizontal, vertical and diagonal details are shown as negative 

images with a reversal of white and black, because of contraints of 

the printing process. 

 

 

Doing more than 5 or 6 levels is not useful, because the data 

resulting from 6 transforms consists mostly of detail 

coefficients, not of smooth coefficients. Another transform 

would only work on these smooth coefficients, so overall it 

cannot make much difference. The percents given above are not 

unbeatable. For the calculation of the entropy the formula of the 

data compression is used. This formula treats the data as a 

large, unordered bag of samples. The probability estimates can 

also be based on the already sent neighbours. This is more 

complicated, but can yield better compression. Said and 

Pearlman do so in their paper [9]. I did not do this because 

things would get quite complicated. 

 

According to David Salomon[14], the art of data compression 

is not to squeeze every bit out of  everything, but to find a 

balance between programming complexity and compression 

ratio. 

 

V. CONCLUSION 

Wavelet Image Processing enables computers to store an image 

in many scales of resolutions, thus decomposing an image into 

various levels and types of details and approximation with 

different-valued resolutions. Wavelets allow one to compress 

the image using less storage space with more details of the 

image. The advantage of decomposing images to approximate 

and detail parts is that it enables to isolate and manipulate the 

data with specific properties. With this, it is possible to 

determine whether to preserve more specific details. For 

instance, keeping more vertical detail instead of keeping all the 

horizontal, diagonal and vertical details of an image that has 

more vertical aspects. This would allow the image to lose a 

certain amount of horizontal and diagonal details, but would 

not affect the image in human perception. 
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