

Study of CO₂ sensing properties of SnO₂-CuO thick films

A. V. Kohale

Department of Physics, Shri R. R. Lahoti Science College, Morshi- 444 905 India

Abstract

The different properties of SnO₂-CuO thick film semiconductor gas sensor in presence of CO₂ gas is studied at room temperature (303 K). The tin oxide and copper oxide (SnO₂:CuO) mixed powder heated at 800⁰C. From these active powder thick films was prepared by screen printing technique on glass substrate. The prepared thick film samples were fired in muffle furnace for 1h at 150⁰C for removing binder. The electrical behavior of SnO₂-CuO films depends on CO₂ gas. The variation of electrical resistance at room temperature with increasing CO₂ concentration in range 0 to 1100 ppm was measured. The sensitivity is calculated at different CO₂ concentration and presented as response curve. The gas sensor sensitivity increases linearly with increment of the gas concentration of CO₂. From desired study of properties of sensor it is observed that the best material for CO₂ gas detection is 50SnO₂-50CuO. From the XRD analysis it is observed that the cassiterite tetragonal phase for SnO₂ and tenorite monoclinic phase for CuO is observed and crystallite size by using Scherrer formula is found to be 108.5, 97.3 and 122.1 nm for 80SnO₂-20CuO, 50SnO₂-50CuO and 20SnO₂-80CuO respectively. From calculated value seen that the crystallite size is small for 50SnO₂-50CuO sample in a SnO₂-CuO system and hence it gives higher sensitivity than the other sample.

Keywords: SnO₂-CuO, Screen-printing technique, XRD, CO₂ gas sensor.

1. Introduction

Monitoring CO₂ gas in the atmosphere is important because it is known as a greenhouse gas contributing to global warming. Moreover, decreased oxygen and increased CO₂ concentrations reduce the respiration rate of fruit. Control of carbon dioxide gases in modified atmospheres packaging (MAP) also plays an important role in the agricultural sector [1].

In view of this, we have prepared thin films of SnO₂ doped with CuO by screen printing technique on glass substrates and their subsequent oxidation in an oxygen atmosphere and tested the CO₂ gas response of the thick film element at different concentration of CO₂ gas and presented as response curve.

2. Experimental procedure

2.1 Construction of sensor

SnO_2 and CuO are mixed (Sample code: SA_2 : 20:80, SA_5 : 50:50, SA_8 : 80:20) thoroughly in an acetone medium by using a mortal and pestle and then heated at 800°C in a furnace. The paste used in screen printing was prepared by maintaining inorganic to organic material ratio at 70:30. The inorganic part consists of a mixture of SnO_2 - CuO . The organic part consisted of 8% Ethyl cellulose (EC) and 92 % butyl carbitol acetate (BCA). A solution of EC+BCA (in ratio 8:92) was made and added drop wise to the above resultant mixture until proper thixotropic properties of the paste were achieved. The substrate use for the screen printing was cleaned by using distilled water and then acetone. The paste was screen printed on a glass substrate [2], of size 75mm X 25mm. The films were dried at 150°C for about 20 min to remove the organic material. The Film was aged for 4 weeks in open air [3] for drying. For the electrical characterization purpose form the electrodes on two sides of thin film by using silver paste. Thickness of the SA_2 , SA_5 and SA_8 films was measured by digital micrometer having resolution $\pm 1 \mu\text{m}$ and is found to be 10, 18.5 and 31 μm respectively.

2.2 Measurement of gas sensing characteristics

The gas sensing properties of these samples (thick films) were studied in a home built static gas characterization system. The system consists of a base plate with gas inlet, insulator base, glass plate, DC power supply, resistor (Rs), DC millivoltmeter (Systronics type, Model No. 412, $\pm 1 \mu\text{V}$) and chamber (Volume: 24 lit). The base plate, insulator plate and glass plate are placed on one above the other. This whole assembly is kept inside the chamber.

Using silver paste between two sides of thick films forms the electrodes. The DC power supply (V) in series with resistor ($\text{Rs} = 1 \text{ M}\Omega$) is connected to sensor. The voltage drop (Vs) across the Rs is measured by the microvoltmeter. The required gas concentration inside the system is achieved by passing gas through flow meter in the airtight chamber at ambient condition. The samples were tested for a wide range of concentration of CO_2 . The sensitivity is calculated by using the formula

$$S = (R_g - R_a) / R_a$$

Where R_a & R_g are the electrical resistances of the sensor in presence of air and gas+air respectively.

3. Results

The thrust for the present work was to study the gas sensing characteristics of $\text{SnO}_2\text{-CuO}$ thick films. The results obtained are analyzed, discussed and presented in the following part of this section.

3.1 Characterization of film by XRD

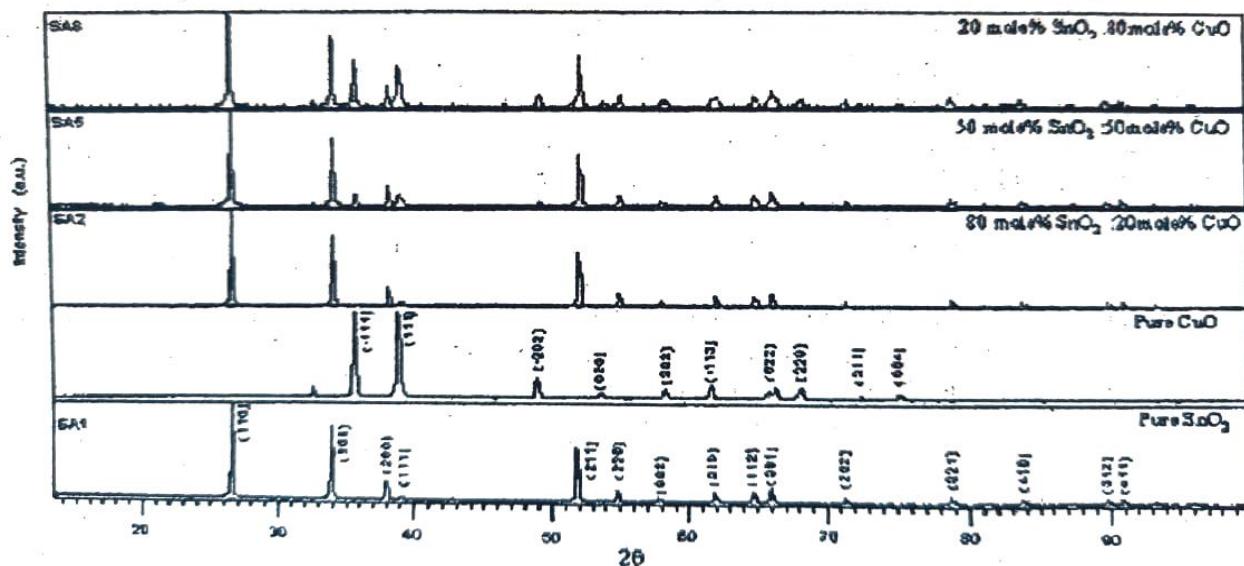


Fig. 1 : XRD patterns of $\text{SnO}_2\text{-CuO}$ {SA2(80:20), SA5(50:50), SA8(80:20), Pure SnO_2 and Pure CuO } powder

In fig. 1, shows XRD spectra of pure SnO_2 , pure CuO and composite of SnO_2 and CuO . The crystallite size for all the samples is calculated by using the Scherrer equation [4]

$$D = 0.9 \lambda / \beta \cos \theta$$

Where D is the crystallite size, k is the constant ($= 0.9$ assuming that the particles are spherical), λ is the wavelength of X-ray radiation, β is the line width (obtained after correction for the instrumental broadening) and θ is the angle of diffraction. The average crystallite size of the sample for $\text{SnO}_2:\text{CuO}$ system for different compositions i.e. 80:20, 50:50, 80:20 is found to be 108.5, 97.37 and 122.1 nm respectively. From this it is observed that the crystallite size for 50 SnO_2 - 50 CuO sample is smaller than the other samples.

3.2 Sensing Characteristics of the sensor

To find out the sensor range for the present material the gas concentration-dependent sensitivity was studied systematically for CO₂ gas and results obtained are depicted in fig. 2 shows variation of sample sensitivity as a function of gas concentration for CO₂ gas at room temperature (303 K). From this figure, it is observed that for different compositions of SnO₂ and CuO sensitivity variation is drastically changed. It is observed that the sensitivity is maximum for 50SnO₂-50CuO mixed oxide thick film i.e. 1.325 at 1098 ppm and for other composition i.e. 80SnO₂-20CuO and 20SnO₂-80CuO sample sensitivity is less than the 50SnO₂-50CuO sample.

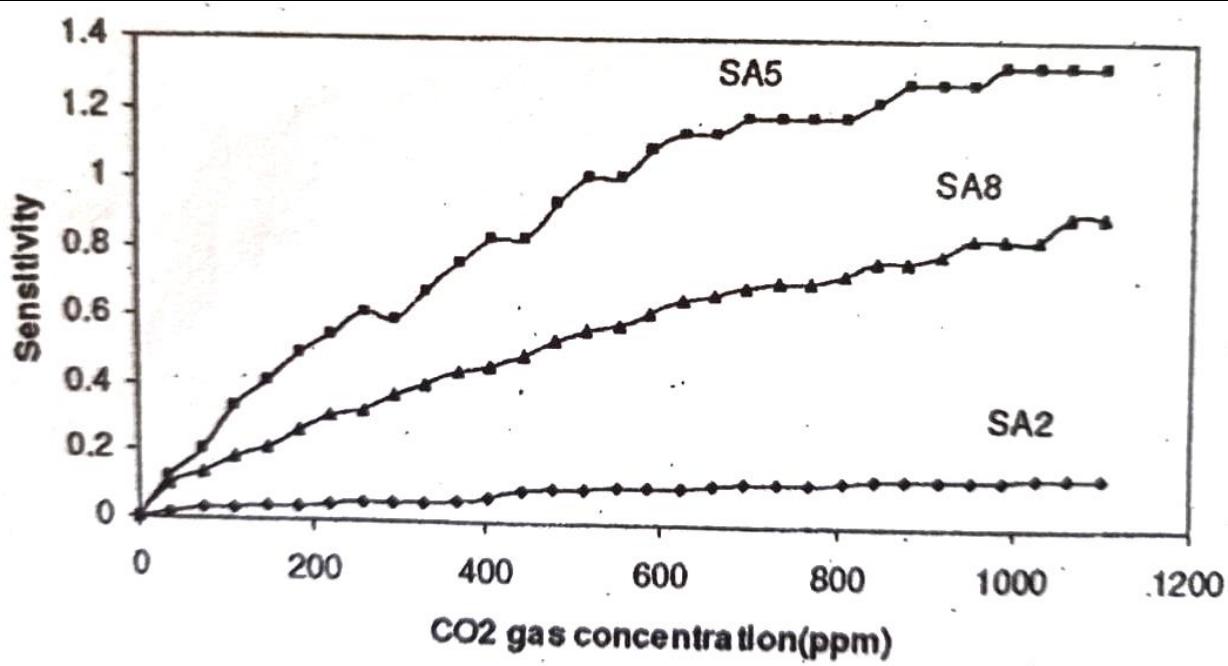


Fig. 2: Variation of sensitivity with concentration of CO₂ gas at room temperature (303 K) for different samples

3.3 Sensing Mechanism

The oxidation state of Copper in SnO₂-CuO is important since it influences the interaction with other gas species such as CO₂ [5]. Liu and Robota [6] observed that even under strongly oxidizing conditions, a significant fraction of the copper still remains as cuprous ions (Cu⁺). Some Cu⁺ ions and oxygen vacancies are located on the surface of the sensing element. When CO₂ gas molecules are brought in contact with the sensing element, they are preferably adsorbed on the Cu⁺ sites to form a bond between them due to the existence of an unshared electron pair in oxygen and an empty d orbital in Cu⁺. As the electron cloud rearrangement is oriented toward Cu⁺ side, which possesses higher electron affinity and eventually broken to release CO and O₂, the bond between oxygen and Cu⁺ ions is weakened. The oxygen molecules then recombine with oxygen vacancies through the reaction $\frac{1}{2} O_2 + 2e^- + V_O'' = O_0^x$ extracting two free electrons from the conduction band of tin oxide at the same time. This would increase the resistance of the sensing material [7]. In order to correlate morphological properties of the sensors, variation of the crystallite size may play an important role in sensing mechanism. From calculated value seen that the crystallite size is small for 50SnO₂-50CuO sample in a SnO₂-CuO system and hence it gives higher sensitivity than the other sample.

4 Conclusion

Among various metal oxides CuO is a unique promoter of SnO₂ based elements for the detection of CO₂. Typical features of SnO₂:CuO sensors are extremely high sensitivity to CO₂ and very rapid response on switching 'ON' CO₂ and recovery on switching 'OFF' CO₂. The active range of SnO₂:CuO sensor is between 0 and 1098 ppm. The optimum thickness, crystallite size of the SnO₂:CuO sensor is about 18.5 μ m, 97.37 nm respectively and the optimum CuO loading seems to be 50 mol%. The 50SnO₂:50CuO sensor is extremely sensitive to CO₂ gas.

References

- [1] S.R. Payne, C.J. Purham, S.M. Scott, C.E. Devine, *Mate. Sci.* 49 (3), 1998, 277-287
- [2] C.A. Harpar, *Handbook of Thick Film Hybrid Microelectronics*, McGraw-Hill, New York, 1974
- [3] S.K. Joshi, C.N.R Rao, N.T. Tsuruto, S. Nagakura (Eds), *New Materials*, Narosa Publishing House, New Delhi, 1992
- [4] J. Tamaki, K. Shiamnoe, Y. Yamada, Y, Yamaoto, N. Miura and N. Yamazoe, *Sensors and Actuators B*, 49, 1998, 125-186
- [5] R. Pirone, P. Ciambell, G. Moretti and G. Russo, *Appl. Catal.*, B, 8, 1996
- [6] D.J Liu and H.J. Robota, *Appl. Catal.*, B4, 1994, 155-165
- [7] Gong Zhang nad Meilin Liu, *Sensors and Actuators B*, 69, 2000, 144-152